Advertisement

Analytical theory for the fluence, planar fluence, energy fluence, planar energy fluence and absorbed dose of primary particles and their fragments in broad therapeutic light ion beams

Published:April 06, 2009DOI:https://doi.org/10.1016/j.ejmp.2009.02.003

      Abstract

      The purpose of the present work is to develop analytical expressions for the depth variation of the fluence, planar fluence, the energy fluence, planar energy fluence, the mean energy and absorbed dose of primary ions and their associated fragments in tissue-like media with ranges of clinical interest. The analytical expressions of the primary ions and associated fragments take into account nuclear interactions, energy losses, range straggling and multiple scattering. The analytical models of the radiation field quantities were compared with the results of the modified Monte Carlo (MC) code SHIELD-HIT+. The results show that the shape of the depth absorbed dose distribution of the primary particles is characterized by an increasingly steep exponential fluence decrease with depth as the charge and atomic weight increase. This is accompanied by a compensating increased energy loss towards the Bragg peak as the charge of the ion increases. These largely compensating mechanisms are the main reason that the depth absorbed dose curve of all light ions is surprisingly similar. In addition, a rather uniform dose in the plateau region is obtained since the increasing fragment production almost precisely compensates the loss of primaries. The dominating light fragments such as protons and alpha particles are characterized by longer ranges than the primaries and their depth dose curves to some extent coincide well with the depth fluence curves due to a rather slow variation of mean stopping powers. In contrast, the heavier fragments are characterized by the build up of a slowing down spectrum similar to that of the primaries but with initially slightly shorter or longer ranges depending on their mass to atomic number ratio. The presented analytical theory for the light ion penetration in matter agree quite well with the MC and experimental data and may be very useful for fast analytical calculations of quantities like mean energy, fluence, energy fluence, absorbed dose, and LET.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kempe J.
        • Gudowska I.
        • Brahme A.
        Depth dose and LET distributions of 1H,4He, 7Li and 12C ions in therapeutic light ion beams.
        Med Phys. 2007; 34: 183-192
        • Heckman H.H.
        • Greiner D.E.
        • Lindström P.J.
        • Shwe H.
        Fragmentation of 4He, 12C, 14N and 16O.
        Phys Rev C. 1978; 17: 1735-1747
        • Golokov M.
        • Aleksandrov D.
        • Chulkov L.
        • Kraus G.
        • Schardt D.
        Fragmentation of 270 MeV/u carbon ions in water.
        in: Amaldi U. Lemoigne Yves Advances in hadrontherapy. Elsevier, Amsterdam1997: 316-324
        • Matsufudji N.
        • Komori M.
        • Sasaki H.
        • Akiu K.
        • Ogawa M.
        • Fukumura A.
        • et al.
        Spatial fragment distribution from a therapeutic pencil-like carbon beam in water.
        Phys Med Biol. 2005; 50: 3393-3403
        • Maccabee H.D.
        • Ritter M.A.
        Fragmentation of high-energy oxygen-ion beam in water.
        Radiat Res. 1974; 60: 409-421
        • Petti P.L.
        Differential pencil-beam dose calculations for charged particles.
        Med Phys. 1992; 19: 137-149
        • Zheng-Ming L.
        • Brahme A.
        An overview of the transport theory of charged particles.
        Rad Phys Chem. 1993; 41: 673-703
        • Hong L.
        • Goitein M.
        • Bucciolini M.
        • Comiskey R.
        • Gottschalk B.
        • Rosenthal S.
        • et al.
        A pencil beam algorithm for proton dose calculations.
        Phys Med Biol. 1996; 41: 1305-1330
        • Carlsson Å
        • Andreo P.
        • Brahme A.
        Monte Carlo and analytical calculation of protons pencil beams for computerized treatment plan optimization.
        Phys Med Biol. 1997; 42: 1033-1035
        • Bortfeld T.
        An analytical approximation of the Bragg curve for therapeutic proton beams.
        Med Phys. 1997; 24: 2024-2033
        • Krämer M.
        • Jäkel O.
        • Haberer T.
        • Kraft G.
        • Schardt D.
        • Weber U.
        Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization.
        Phys Med Biol. 2000; 45: 3299-3317
        • Hollmark M.
        • Uhrdin J.
        • Belkic Dz
        • Gudowska I.
        • Brahme A.
        Influence of multiple scattering and energy loss straggling on the absorbed dose distributions of therapeutic light ion beams: I. Analytical pencil beam model.
        Phys Med Biol. 2004; 49: 3247-3265
        • Kanematsu N.
        • Akagi T.
        • Takatani Y.
        • Yonai S.
        • Sakamoto H.
        • Yamashita H.
        Extended collimator model for pencil-beam dose calculation in proton radiotherapy.
        Phys Med Biol. 2006; 51: 4807-4817
        • Hollmark M.
        • Gudowska I.
        • Belkić Dž
        • Brahme A.
        • Sobolevsky N.
        An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions.
        Phys Med Biol. 2008; 53: 3477-3491
        • Kempe J.
        • Brahme A.
        Energy-range relation and mean energy variation in therapeutic particle beams.
        Med Phys. 2008; 35: 159-170
      1. ICRU. Radiation dosimetry: Electron Beams with Energies between 1 and 50 MeV. ICRU Report 35. Bethesda MD; 1984.

        • ICRU
        Fundamental quantities and units for ionizing radiation.
        (ICRU Report 60) Oxford University Press, 1998
        • Andreo P.
        • Brahme A.
        Fluence and absorbed dose in high energy electron beams.
        Acta Radiol. 1983; : 25-33
        • Brahme A.
        Simple relations for the penetration of high energy electron beams in matter.
        National Institute of Radiation Protection, Stockholm, Sweden1975 (Report SSI: 1975-011)
        • Svensson H.
        • Brahme A.
        Recent advances in electron and photon dosimetry.
        in: Orton C.G. Radiation dosimetry physical and biological aspects. Plenum Press, New York1986: 87-170
        • Schall I.
        • Schardt D.
        • Geissel H.
        • Irnish H.
        • Kankeleit E.
        • Kraft G.
        • et al.
        Charge-changing nuclear reactions of relativsitic light-ion beams (5≤ Z ≤10) passing through thick absorbers.
        Nucl Inst Meth B. 1996; 117: 221-234
        • Schardt D.
        • Schall I.
        • Geissel H.
        • Irnish H.
        • Kraft G.
        • Magel A.
        • et al.
        Nuclear fragmentation of high-energy heavy-ion beams in water.
        Adv Space Res. 1996; 17: 287-294
        • Fukumura A.
        • Hiraoka T.
        • Tomitani T.
        • Kanai T.
        • Murakami T.
        • Minohara S.
        • et al.
        Attenuation of therapeutic heavy-ion beams in various thick targets due to projectile fragmentation.
        in: Advances in hadrontherapy. Amsterdam: Elsevier, 1997: 325-330
        • Morrissey D.J.
        Systematic of momentum distributions from reactions with relativistic ions.
        Phys Rev C. 1989; 39: 460-470
        • Greiner D.E.
        • Lindström P.J.
        • Heckman H.H.
        • Cork B.
        • Beiser F.S.
        Momentum distributions of isotopes produced by fragmentation of relativistic 12C and 16O projectiles.
        Phys Rev Lett. 1975; 35: 152-155
      2. Giacomelli M. Fragmentation of heavy ions in tissue equivalent targets study of emission angles in nuclear fragmentation of light ions at intermediate energies. Ph.D thesis, Faculty of Mathematics and Physics, Ljubjana, Slovenia; 2004.

      3. ICRU. Stopping powers and ranges for protons and alpha particles. ICRU Report 49. Bethesda, MD; 1993.

        • Gudowska I.
        • Sobolevsky N.
        • Andreo P.
        • Belkić Dz
        • Brahme A.
        Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT.
        Phys Med Biol. 2004; 49: 1933-1958
        • Geithner O.
        • Andreo P.
        • Sobolevsky N.
        • Hartmann G.
        • Jäkel O.
        Calculation of stopping power ratios for carbon ion dosimetry.
        Phys Med Biol. 2006; 51: 2279-2292
      4. Kaizuka H. Radiation dosimetry for heavy ion cancer therapy with CR-39 solid state track detector. Master thesis University of Tokyo;1997.

        • Matsufuji N.
        • Fukumura A.
        • Komori M.
        • Kanai T.
        • Kohno T.
        Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy.
        Phys Med Biol. 2003; 48: 1605-1623
      5. Haettner E. Experimental study on carbon ion fragmentation in water using GSI therapy beams. Master thesis, Royal Inst. Of Technology, Stockholm, Sweden; 2006.

        • Gudowska I.
        • Kempe J.
        • Sobolewsky N.
        Low and high LET dose components in carbon beam.
        Radiat Prot Dosimetry. 2006; 122: 483-484