New potential for enhancing concomitant chemoradiotherapy with FDA approved concentrations of cisplatin via the photoelectric effect

Published:December 06, 2014DOI:


      • Chemoradiotherapy with cisplatin includes dose-limiting systemic toxicities.
      • We propose a new strategy using FDA approved concentrations of cisplatin.
      • The existence of cisplatin nanoparticles provides radiation boost in the tumor.
      • The cisplatin is delivered in-situ from radiotherapy biomaterials.
      • The results provide new therapeutic strategy for more effective chemoradiotherapy.


      We predict, for the first time, that by using United States Food and Drug Administration approved concentrations of cisplatin, major radiosensitization may be achieved via photoelectric mechanism during concomitant chemoradiotherapy (CCRT). Our analytical calculations estimate that radiotherapy (RT) dose to cancer cells may be enhanced via this mechanism by over 100% during CCRT. The results proffer new potential for significantly enhancing CCRT via an emerging clinical scenario, where the cisplatin is released in-situ from RT biomaterials loaded with cisplatin nanoparticles.


      To read this article in full you will need to make a payment


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Seiwert T.Y.
        • Salama J.K.
        • Vokes E.E.
        The concurrent chemoradiation paradigm-general principles.
        Nat Clin Pract Oncol. 2007; 4: 86-100
        • Dhar S.
        • Kolishetti N.
        • Lippard S.J.
        • Farokhzad O.C.
        Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo.
        • Zheng Y.
        • Hunting D.
        • Ayotte P.
        • Sanche L.
        Role of secondary low-energy electrons in the concomitant chemoradiation therapy of cancer.
        Phys Rev Lett. 2008; 100: 198101
        • Wilson G.D.
        • Bentzen S.M.
        • Harari P.M.
        Biologic basis for combining drugs with radiation.
        Semin Radiat Oncol. 2006; 16: 2-9
        • Cooper D.R.
        • Bekah D.
        • Nadeau J.L.
        Gold nanoparticles and their alternatives for radiation therapy enhancement.
        Front Chem. 2014; 2: 86
        • Marcu L.
        • Bezak E.
        Stochastic modelling of the role of cisplatin in altered fractionation schedules for head and neck cancer.
        Phys Med. 2010; 26: 177-183
        • Cheung J.Y.C.
        • Tang F.
        The calculation of dose enhancement close to platinum implants for skull radiography.
        Health Phys. 2007; 93: 267-272
        • Rousseau J.
        • Barth R.F.
        • Fernandez M.
        • Adam J.-F.
        • Balosso J.
        • Estève F.
        • et al.
        Efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumors.
        J Neurooncol. 2010; 98: 287-295
        • Taratula O.
        • Garbuzenko O.B.
        • Chen A.M.
        • Minko T.
        Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA.
        J Drug Target. 2011; 19: 900-914
        • Peng X.-H.
        • Wang Y.
        • Huang D.
        • Wang Y.
        • Shin H.J.
        • Chen Z.
        • et al.
        Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles.
        ACS Nano. 2011; 5: 9480-9493
        • Cormack R.A.
        • Sridhar S.
        • Suh W.W.
        • D'Amico A.V.
        • Makrigiorgos G.M.
        Biological in situ dose painting for image-guided radiation therapy using drug-loaded implantable devices.
        Int J Radiat Oncol Biol Phys. 2010; 76: 615-623
        • Nagesha D.K.
        • Tada D.B.
        • Stambaugh C.K.K.
        • Gultepe E.
        • Jost E.
        • Levy C.O.
        • et al.
        Radiosensitizer-eluting nanocoatings on gold fiducials for biological in-situ image-guided radio therapy (BIS-IGRT).
        Phys Med Biol. 2010; 55: 6039-6052
        • Berbeco R.I.
        • Ngwa W.
        • Makrigiorgos G.M.
        Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: new potential for external beam radiotherapy.
        Int J Radiat Oncol Biol Phys. 2011; 81: 270-276
        • Ngwa W.
        • Makrigiorgos G.M.
        • Berbeco R.I.
        Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement.
        Phys Med Biol. 2010; 55: 6533-6548
        • Kuban D.A.
        • Levy L.B.
        • Cheung M.R.
        • Lee A.K.
        • Choi S.
        • Frank S.
        • et al.
        Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease?.
        Int J Radiat Oncol Biol Phys. 2011; 79: 1310-1317
        • Cho S.H.
        • Jones B.L.
        • Krishnan S.
        The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources.
        Phys Med Biol. 2009; 54: 4889-4905
        • Elbialy N.S.
        • Fathy M.M.
        • Khalil W.M.
        Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers.
        Phys Med. 2014; 30: 843-848
        • Detappe A.
        • Tsiamas P.
        • Ngwa W.
        • Zygmanski P.
        • Makrigiorgos M.
        • Berbeco R.
        The effect of flattening filter free delivery on endothelial dose enhancement with gold nanoparticles.
        Med Phys. 2013; 40: 031706
        • Liu H.H.
        • Verhaegen F.
        An investigation of energy spectrum and lineal energy variations in mega-voltage photon beams used for radiotherapy.
        Radiat Prot Dosimetry. 2002; 99: 425-427
        • Cole A.
        Absorption of 20-eV to 50,000-eV electron beams in air and plastic.
        Radiat Res. 1969; 38: 7-33
        • Bennington J.L.
        Cellular kinetics of invasive squamous carcinoma of the human cervix cellular kinetics of invasive squamous carcinoma.
        1969: 1082-1088
        • Boulikas T.
        Clinical overview on lipoplatin: a successful liposomal formulation of cisplatin.
        Expert Opin Investig Drugs. 2009; 18: 1197-1218
        • Sacco J.J.
        • Botten J.
        • Macbeth F.
        • Bagust A.
        • Clark P.
        The average body surface area of adult cancer patients in the UK: a multicentre retrospective study.
        PLoS One. 2010; 5: e8933
        • Eichelberger M.D.L.E.
        • Koch M.D.M.O.
        • Daggy M.S.J.K.
        • Ulbright M.D.T.M.
        • Eble M.D.J.N.
        • Cheng M.D.L.
        Predicting tumor volume in radical prostatectomy specimens from patients with prostate cancer.
        Am J Clin Pathol. 2003; 120: 386-391
        • Flieder D.B.
        • Port J.L.
        • Korst R.J.
        • Christos P.J.
        • Levin M.a.
        • Becker D.E.
        • et al.
        Tumor size is a determinant of stage distribution in t1 non-small cell lung cancer.
        Chest. 2005; 128: 2304-2308
        • Song H.
        • Du Y.
        • Sgouros G.
        • Prideaux A.
        • Frey E.
        • Wahl R.L.
        Therapeutic potential of 90Y- and 131I-labeled anti-CD20 monoclonal antibody in treating non-Hodgkin’s lymphoma with pulmonary involvement: a Monte Carlo-based dosimetric analysis.
        J Nucl Med. 2007; 48: 150-157
        • Keall P.J.
        • Mageras G.S.
        • Balter J.M.
        • Emery R.S.
        • Forster K.M.
        • Jiang S.B.
        • et al.
        The management of respiratory motion in radiation oncology report of AAPM task group 76.
        Med Phys. 2006; 33: 3874
        • Machtay M.
        • Bae K.
        • Movsas B.
        • Paulus R.
        • Gore E.M.
        • Komaki R.
        • et al.
        Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: an analysis of the radiation therapy oncology group.
        Int J Radiat Oncol Biol Phys. 2012; 82: 425-434
        • Sengupta P.
        • Basu S.
        • Soni S.
        • Pandey A.
        • Roy B.
        • Oh M.S.
        • et al.
        Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity.
        Proc Natl Acad Sci U S A. 2012; 109: 11294-11299
        • Avgoustakis K.
        • Beletsi A.
        • Panagi Z.
        • Klepetsanis P.
        • Karydas A.G.
        • Ithakissios D.S.
        PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties.
        J Control Release. 2002; 79: 123-135
        • Dong Y.
        • Chin S.-F.
        • Blanco E.
        • Bey E.a.
        • Kabbani W.
        • Xie X.-J.
        • et al.
        Intratumoral delivery of beta-lapachone via polymer implants for prostate cancer therapy.
        Clin Cancer Res. 2009; 15: 131-139
        • Qian F.
        • Szymanski A.
        • Gao J.
        Fabrication and characterization of controlled release poly(D,L-lactide-co-glycolide) millirods.
        J Biomed Mater Res. 2001; 55: 512-522
        • Mady M.M.
        • Fathy M.M.
        • Youssef T.
        • Khalil W.M.
        Biophysical characterization of gold nanoparticles-loaded liposomes.
        Phys Med. 2012; 28: 288-295
        • Kim Y.
        • Tomé W.A.
        Is it beneficial to selectively boost high-risk tumor subvolumes? A comparison of selectively boosting high-risk tumor subvolumes versus homogeneous dose escalation of the entire tumor based on equivalent EUD plans.
        Acta Oncol (Madr). 2008; 47: 906-916
        • Chattopadhyay N.
        • Cai Z.
        • Kwon Y.L.
        • Lechtman E.
        • Pignol J.P.
        • Reilly R.M.
        Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation.
        Breast Cancer Res Treat. 2013; 137: 81-91
        • Chattopadhyay N.
        • Cai Z.
        • Pignol J.-P.
        • Keller B.
        • Lechtman E.
        • Bendayan R.
        • et al.
        Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer.
        Mol Pharm. 2010; 7: 2194-2206
        • Chithrani D.B.
        • Jelveh S.
        • Jalali F.
        • van Prooijen M.
        • Allen C.
        • Bristow R.G.
        • et al.
        Gold nanoparticles as radiation sensitizers in cancer therapy.
        Radiat Res. 2010; 173: 719-728
        • Cai Z.
        • Pignol J.-P.
        • Chattopadhyay N.
        • Kwon Y.L.
        • Lechtman E.
        • Reilly R.M.
        Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
        Med Phys. 2013; 40: 114101
        • Wälzlein C.
        • Scifoni E.
        • Krämer M.
        • Durante M.
        Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons.
        Phys Med Biol. 2014; 59: 1441-1458
        • Wälzlein C.
        • Krämer M.
        • Scifoni E.
        • Durante M.
        Advancing the modeling in particle therapy: from track structure to treatment planning.
        Appl Radiat Isot. 2014; (Pt B:171–6): 83
        • Douglass M.
        • Bezak E.
        • Penfold S.
        Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.
        Med Phys. 2013; 40: 071710
        • Shikanov A.
        • Shikanov S.
        • Vaisman B.
        • Golenser J.
        • Domb A.J.
        Cisplatin tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant.
        Chemother Res Pract. 2011; 2011: 175054