Advertisement
Review paper| Volume 31, ISSUE 2, P120-129, March 2015

Download started.

Ok

Novel biomedical applications of Cerenkov radiation and radioluminescence imaging

Published:December 31, 2014DOI:https://doi.org/10.1016/j.ejmp.2014.12.003

      Highlights

      • Small animal Cerenkov luminescence imaging.
      • Cerenkov luminescence tomography.
      • Radioluminescence imaging.
      • Human Cerenkov imaging.

      Abstract

      The main goals of this review is to provide an up-to-date account of the different uses of Cerenkov radiation (CR) and radioluminescence imaging for pre-clinical small animal imaging. We will focus on new emerging applications such as the use of Cerenkov imaging for monitoring radionuclide and external radiotherapy in humans. Another novel application that will be described is the monitoring of radiochemical synthesis using microfluidic chips.
      Several pre-clinical aspects of CR will be discussed such as the development of 3D reconstruction methods for Cerenkov images and the use of CR as excitation source for nanoparticles or for endoscopic imaging.
      We will also include a discussion on radioluminescence imaging that is a more general method than Cerenkov imaging for the detection using optical methods of alpha and gamma emitters.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Xu Y.
        • Liu H.
        • Cheng Z.
        Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging.
        J Nucl Med. 2011; 52: 2009-2018
        • Spinelli A.E.
        • Marengo M.
        • Calandrino R.
        • Sbarbati A.
        • Boschi F.
        Optical imaging of radioisotopes: a novel multimodal approach to molecular imaging.
        Q Nucl Med Mol Imaging J. 2012; 56: 280-290
        • Ma Xiaowei
        • Wang Jing
        • Cheng Zhen
        Cerenkov radiation: a multi-functional approach for biological sciences.
        Front Phys. 2014; 2: 1-14
      1. Boschi F, Spinelli AE. Cerenkov luminescence imaging at a glance. Curr Mol Imm 2014 [in press]. http://dx.doi.org/10.2174/2211555203666141128002406.

        • Jelley J.V.
        Cerenkov radiation and its applications.
        Pergamon, London1958
        • Tamm I.E.
        • Frank I.M.
        Coherent radiation from a fast electron in a medium.
        Dokl Akad Nauk SSSR. 1937; 14: 107-112
        • Spinelli A.E.
        • D'Ambrosio D.
        • Calderan L.
        • Marengo M.
        • Sbarbati A.
        • Boschi F.
        Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers.
        Phys Med Biol. 2010; 55: 483-495
        • Mitchell G.S.
        • Gill R.K.
        • Boucher D.L.
        • Li C.
        • Cherry S.R.
        In vivo Cerenkov luminescence imaging: a new tool for molecular imaging.
        Philos Trans A Math Phys Eng Sci. 2011; 369: 4605-4619
        • Beattie B.J.
        • Thorek D.L.J.
        • Schmidtlein C.R.
        • Pentlow K.S.
        • Humm J.L.
        • Hielscher A.H.
        Quantitative modeling of Cerenkov light production efficiency from medical radionuclides.
        PLoS One. 2012; 7: e31402
        • Spinelli A.E.
        • Boschi F.
        Optimizing in vivo small animal Cerenkov luminescence imaging.
        J Biomed Opt. 2012; 17: 040506
        • Boschi F.
        • Spinelli A.E.
        • D'Ambrosio D.
        • Calderan L.
        • Marengo M.
        • Sbarbati A.
        Combined optical and single photon emission imaging: preliminary results.
        Phys Med Biol. 2009; 54: L57-L62
        • Spinelli A.E.
        • Lo Meo S.
        • Calandrino R.
        • Sbarbati A.
        • Boschi F.
        Optical imaging of Tc-99m based tracers, in vitro and in vivo results.
        J Biomed Opt. 2011; 16
        • Sitharamarao D.N.
        • Duncan J.F.
        Molecular excitation of water by γ-irradiation.
        J Phys Chem. 1963; 67: 2126-2132
        • Tarasov M.D.
        • El’yash S.L.
        • Goncharova V.F.
        • Petrushin O.N.
        • Savel’ev Y.A.
        • Tarakanov M.Y.
        • et al.
        Efficiency of radioluminescence of water under the action of accelerated electrons.
        Inst Exp Tech. 2007; 50: 761-763
        • Kondakov A.K.
        • Gubskiy I.L.
        • Znamenskiy I.A.
        • Chekhonin V.P.
        Possibilities of optical imaging of the 99mTc-based radiopharmaceuticals.
        J Biomed Opt. 2014; 19 (Art. no. 046014)
        • Pagliazzi M.
        • Boschi F.
        • Spinelli A.E.
        Imaging of luminescence induced by beta and gamma emitters in conventional non-scintillating materials.
        RSC Adv. 2014; 4: 13687-13692
        • Boschi F.
        • Lo Meo S.
        • Rossi P.L.
        • Calandrino R.
        • Sbarbati A.
        • Spinelli A.E.
        Optical imaging of alpha emitters: simulations, phantoms and in vivo results.
        J Biomed Opt. 2011; 16
        • Baschenko S.M.
        Remote optical detection of alpha particle sources.
        J Rad Prot. 2004; 24: 75-82
        • Robertson R.
        • Germanos M.S.
        • Li C.
        • Mitchell G.S.
        Cherry SR silva MD optical imaging of Cerenkov light generation from positron-emitting radiotracers.
        Phys Med Biol. 2009; 54: N355-N365
        • Liu H.
        • Ren G.
        • Miao Z.
        • Zhang X.
        • Tang X.
        • Han P.
        • et al.
        Molecular optical imaging with radioactive probes.
        PLoS One. 2010; 5: e9470
        • Boschi F.
        • Calderan L.
        • D'Ambrosio D.
        • Marengo M.
        • Fenzi A.
        • Calandrino R.
        • et al.
        In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation.
        Eur J Nucl Med. 2011; 38: 120-127
        • Spinelli A.E.
        • Boschi F.
        • D'Ambrosio D.
        • Calderan L.
        • Marengo M.
        • Fenzi A.
        • et al.
        Cherenkov radiation imaging of beta emitters: in vitro and in vivo results.
        Nucl Inst Meth Sect A. 2011; 648: S310-S312
        • Spinelli A.E.
        • Boschi F.
        Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging.
        J Biomed Opt. 2011; 16
        • Jeong S.Y.
        • Hwang M.H.
        • Kim J.E.
        • Kang S.
        • Park J.C.
        • Yoo J.
        • et al.
        Combined Cerenkov luminescence and nuclear imaging of radioiodine in the thyroid gland and thyroid cancer cells expressing sodium iodide symporter: initial feasibility study.
        Endocr J. 2011; 58: 575-583
        • Zhang X.
        • Kuo C.
        • Moore A.
        • Ran C.
        In vivo optical imaging of interscapular brown adipose tissue with (18)F-FDG via cerenkov luminescence imaging.
        PLoS One. 2013; 8: e62007
        • Steinberg J.D.
        • Raju A.
        • Chandrasekharan P.
        • Yang C.T.
        • Khoo K.
        • Abastado J.P.
        • et al.
        Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride.
        EJNMMI Res. 2014; 1: 1-11
        • Boschi F.
        • Pagliazzi M.
        • Rossi B.
        • Cecchini M.P.
        • Gorgoni G.
        • Salgarello M.
        • et al.
        Small-animal radionuclide luminescence imaging of thyroid and salivary glands with Tc99m-pertechnetate.
        J Biomed Opt. 2013; 18: 076005
        • Li C.
        • Mitchell G.C.
        • Cherry S.R.
        Cerenkov luminescence tomography for small-animal imaging.
        Opt Lett. 2010; 35: 1109-1111
        • Hu Z.
        • Liang J.
        • Yang W.
        • Fan W.
        • Li C.
        • Ma X.
        • et al.
        Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation.
        Opt Expr. 2010; 18: 24441-24450
        • Zhong J.
        • Tian J.
        • Yang X.
        • Qin C.
        Whole-body Cerenkov luminescence tomography with the finite element SP 3 method.
        Ann Biomed Eng. 2011; 39: 1728-1735
        • Zhong J.
        • Qin C.
        • Yang X.
        • Zhu S.
        • Zhang X.
        • Tian J.
        Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging.
        Int J Biomed Imaging. 2011; 2011: 641618
        • Hu Z.
        • Chen Xueli
        • Liang Jimin
        • Qu X.
        • Chen D.
        • Yang W.
        • et al.
        Single photon emission computed tomography-guided Cerenkov luminescence tomography.
        J Appl Phys. 2012; 112: 024703
        • Spinelli A.E.
        • Kuo C.
        • Rice B.W.
        • Calandrino R.
        • Marzola P.
        • Sbarbati A.
        • et al.
        Multispectral Cerenkov luminescence tomography for small animal optical imaging.
        Opt Express. 2011; 19: 12605-12618
        • Magota K.
        • Kubo N.
        • Kuge Y.
        • Nishijima K.I.
        • Zhao S.
        • Tamaki N.
        Performance characterization of the inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging.
        Eur J Nucl Med. 2011; 38: 742-752
        • Thorek D.L.
        • Abou D.S.
        • Beattie B.J.
        • Bartlett R.M.
        • Huang R.
        • Zanzonico P.B.
        • et al.
        Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG.
        J Nucl Med. 2012; 53: 1438-1445
        • Kothapalli S.-R.
        • Liu H.
        • Liao J.C.
        • Cheng Z.
        • Gambhir S.S.
        Endoscopic imaging of Cerenkov luminescence.
        Biomed Opt Express. 2012; 3: 1215-1225
        • Liu H.
        • Carpenter C.M.
        • Jiang H.
        • Pratx G.
        • Sun C.
        • Buchin M.P.
        • et al.
        Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study.
        J Nucl Med. 2012; 53: 1579-1584
        • Liu H.
        • Zhang X.
        • Xing B.
        • Han P.
        • Gambhir S.S.
        • Cheng Z.
        Radiation-luminescence excited quantum dots for in vivo multiplexed optical imaging.
        Small. 2010; 6: 1087-1091
        • Dothager R.S.
        • Goiffon R.J.
        • Jackson E.
        • Harpstrite S.
        • Piwnica-Worms D.
        Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of PET isotopes in biological systems.
        PLoS One. 2010; 5: e13300
        • Thorek D.L.
        • Ogirala A.
        • Beattie B.J.
        • Grimm J.
        Quantitative imaging of disease signatures through radioactive decay signal conversion.
        Nat Med. 2013; 19: 1345-1350
        • Boschi F.
        • Spinelli A.E.
        Quantum dots excitation using pure beta minus radioisotopes emitting Cerenkov radiation.
        RSC Adv. 2012; 2: 11049-11052
        • Lewis M.A.
        • Kodibagkar V.D.
        • Öz O.K.
        • Mason R.P.
        On the potential for molecular imaging with Cerenkov luminescence.
        Opt Lett. 2010; 35: 3889-3891
        • Sun C.
        • Pratx G.
        • Carpenter C.M.
        • Liu H.
        • Cheng Z.
        • Gambhir S.S.
        • et al.
        Synthesis and radioluminescence of PEGylated Eu 3+-doped nanophosphors as bioimaging probes.
        Adv Mater. 2011; 23: H195-H199
        • Ma X.
        • Kang F.
        • Xu F.
        • Lu Tianjian
        • Yang W.
        • Wang Z.
        • et al.
        Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+, Yb3+-doped rare-earth microparticles.
        PLoS One. 2013; 8 (e77926)
        • Spinelli A.E.
        • Ferdeghini M.
        • Cavedon C.
        • Zivelonghi E.
        • Calandrino R.
        • Fenzi A.
        • et al.
        First human Cerenkography.
        J Biomed Opt. 2013; 18: 020502
        • Axelsson J.
        • Davis S.C.
        • Gladstone D.J.
        • Pogue B.W.
        Cerenkov emission induced by external beam radiation stimulates molecular fluorescence.
        Med Phys. 2011 Jul; 38: 4127-4132
        • Glaser A.K.
        • Davis S.C.
        • McClatchy D.M.
        • Zhang R.
        • Pogue B.W.
        • Gladstone D.J.
        Projection imaging of photon beams by the Cerenkov effect.
        Med Phys. 2013; 40: 012101
        • Glaser A.K.
        • Davis S.C.
        • Voigt W.H.
        • Zhang R.
        • Pogue B.W.
        • Gladstone D.J.
        Projection imaging of photon beams using Čerenkov-excited fluorescence.
        Phys Med Biol. 2013; 58: 601-619
        • Jarvis L.A.
        • Zhang R.
        • Gladstone D.J.
        • Jiang S.
        • Hitchcock W.
        • Friedman O.D.
        • et al.
        . Cherenkov video imaging allows for the first visualization of radiation therapy in real time.
        Int J Radiat Oncol Biol Phys. 2014; 89: 615-622
        • Cho J.S.
        • Taschereau R.
        • Olma S.
        • Liu K.
        • Chen Y.C.
        • Shen C.K.
        • et al.
        Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip.
        Phys Med Biol. 2009; 54: 6757-6771
        • Dooraghi A.A.
        • Keng P.Y.
        • Chen S.
        • Javed M.R.
        • Kim C.J.
        • Chatziioannou A.F.
        • et al.
        Optimization of microfluidic PET tracer synthesis with Cerenkov imaging.
        Analyst. 2013; 138: 5654-5664
        • Massoud T.F.
        • Gambhir S.S.
        Molecular imaging in living subjects: seeing fundamental biological processes in a new light.
        Genes Dev. 2003; 17: 545-580
        • Bassler N.
        Radiation damage in charge-coupled devices.
        Radiat Environ Biophys. 2010; 49: 373-378
        • Spinelli A.E.
        • Pagliazzi M.
        • Boschi F.
        Design of a multimodal fibers optic system for small animal optical imaging.
        Phys Medica. 2015; 31: 108-111