Advertisement
Original paper| Volume 31, ISSUE 3, P248-256, May 2015

Configuration and validation of an analytical model predicting secondary neutron radiation in proton therapy using Monte Carlo simulations and experimental measurements

  • J. Farah
    Correspondence
    Corresponding author.
    Affiliations
    Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, External Dosimetry Department, BP17, 92260 Fontenay-aux-Roses, France
    Search for articles by this author
  • A. Bonfrate
    Affiliations
    Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, External Dosimetry Department, BP17, 92260 Fontenay-aux-Roses, France
    Search for articles by this author
  • L. De Marzi
    Affiliations
    Institut Curie – Centre de Protonthérapie d'Orsay (CPO), Campus Universitaire Bâtiment 101, 91898 Orsay, France
    Search for articles by this author
  • A. De Oliveira
    Affiliations
    Institut Curie – Centre de Protonthérapie d'Orsay (CPO), Campus Universitaire Bâtiment 101, 91898 Orsay, France
    Search for articles by this author
  • S. Delacroix
    Affiliations
    Institut Curie – Centre de Protonthérapie d'Orsay (CPO), Campus Universitaire Bâtiment 101, 91898 Orsay, France
    Search for articles by this author
  • Author Footnotes
    1 Currently at Institut Gustave Roussy (IGR), Unité de Physique Médicale, 114 Rue Édouard Vaillant, 94805 Villejuif.
    F. Martinetti
    Footnotes
    1 Currently at Institut Gustave Roussy (IGR), Unité de Physique Médicale, 114 Rue Édouard Vaillant, 94805 Villejuif.
    Affiliations
    Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, External Dosimetry Department, BP17, 92260 Fontenay-aux-Roses, France
    Search for articles by this author
  • F. Trompier
    Affiliations
    Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, External Dosimetry Department, BP17, 92260 Fontenay-aux-Roses, France
    Search for articles by this author
  • I. Clairand
    Affiliations
    Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Radioprotection de l'Homme, External Dosimetry Department, BP17, 92260 Fontenay-aux-Roses, France
    Search for articles by this author
  • Author Footnotes
    1 Currently at Institut Gustave Roussy (IGR), Unité de Physique Médicale, 114 Rue Édouard Vaillant, 94805 Villejuif.
Published:February 12, 2015DOI:https://doi.org/10.1016/j.ejmp.2015.01.017

      Highlights

      • Developing an MC-based analytical model reproducing stray neutrons in proton therapy.
      • Upgrading the literature model to enable full 3D H*(10) neutron mapping.
      • Limited efficiency of the literature model in a clinically-relevant configuration.
      • Upgrades given to model neutron variation with beam collimation and modulation.
      • MC-based analytical model consolidated with experimental measurements.

      Abstract

      Purpose

      This study focuses on the configuration and validation of an analytical model predicting leakage neutron doses in proton therapy.

      Methods

      Using Monte Carlo (MC) calculations, a facility-specific analytical model was built to reproduce out-of-field neutron doses while separately accounting for the contribution of intra-nuclear cascade, evaporation, epithermal and thermal neutrons. This model was first trained to reproduce in-water neutron absorbed doses and in-air neutron ambient dose equivalents, H*(10), calculated using MCNPX. Its capacity in predicting out-of-field doses at any position not involved in the training phase was also checked. The model was next expanded to enable a full 3D mapping of H*(10) inside the treatment room, tested in a clinically relevant configuration and finally consolidated with experimental measurements.

      Results

      Following the literature approach, the work first proved that it is possible to build a facility-specific analytical model that efficiently reproduces in-water neutron doses and in-air H*(10) values with a maximum difference less than 25%. In addition, the analytical model succeeded in predicting out-of-field neutron doses in the lateral and vertical direction. Testing the analytical model in clinical configurations proved the need to separate the contribution of internal and external neutrons. The impact of modulation width on stray neutrons was found to be easily adjustable while beam collimation remains a challenging issue. Finally, the model performance agreed with experimental measurements with satisfactory results considering measurement and simulation uncertainties.

      Conclusion

      Analytical models represent a promising solution that substitutes for time-consuming MC calculations when assessing doses to healthy organs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Miralbell R.
        • Lomax A.
        • Cella L.
        • Schneider U.
        Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors.
        Int J Radiat Oncol Biol Phys. 2002; 54: 824-829
        • Hall E.J.
        Intensity-modulated radiation therapy, protons, and the risk of second cancers.
        Int J Radiat Oncol Biol Phys. 2006; 65: 1-7
        • Zacharatou-Jarlskog C.
        • Paganetti H.
        Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age.
        Int J Radiat Oncol Biol Phys. 2008; 72: 228-235
        • Newhauser W.D.
        • Durante M.
        Assessing the risk of second malignancies after modern radiotherapy.
        Nat Rev Cancer. 2011; 11: 438-448
        • Schneider U.
        • Agosteo S.
        • Pedroni E.
        • Besserer J.
        Secondary neutron dose during proton therapy using spot scanning.
        Int J Radiat Oncol Biol Phys. 2002; 53: 244-251
        • Zacharatou-Jarlskog C.
        • Lee C.
        • Bolch W.E.
        • Xu X.G.
        • Paganetti H.
        Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms.
        Phys Med Biol. 2008; 53: 693-717
        • Taddei P.J.
        • Mirkovic D.
        • Fontenot J.D.
        • Giebeler A.
        • Zheng Y.
        • Kornguth D.
        • et al.
        Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams.
        Phys Med Biol. 2009; 54: 2259-2275
        • Kaderka R.
        • Schardt D.
        • Durante M.
        • Berger T.
        • Ramm U.
        • Licher J.
        • et al.
        Out-of-field dose measurements in a water phantom using different radiotherapy modalities.
        Phys Med Biol. 2012; 57: 5059-5074
        • Sayah R.
        • Farah J.
        • Donadille L.
        • Hérault J.
        • Delacroix S.
        • Demarzi L.
        • et al.
        Secondary neutron doses received by pediatric patients during intracranial proton therapy treatments.
        J Radiol Prot. 2014; 34: 279-296
        • La Tessa C.
        • Berger T.
        • Kaderka R.
        • Schardt D.
        • Burmeister S.
        • Labrenz J.
        • et al.
        Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
        Phys Med Biol. 2014; 59: 2111-2125
        • Sullivan A.H.
        A guide to radiation and radioactivity levels near high energy particle accelerators.
        1 870965 18 3 Nuclear Technology Publishing, Ashford, U.K.1992
        • Anferov V.
        Analytic estimates of secondary neutron dose in proton therapy.
        Phys Med Biol. 2010; 55: 7509-7522
        • Zheng Y.
        • Newhauser W.
        • Fontenot J.
        • Taddei P.
        • Mohan R.
        Monte Carlo study of neutron dose equivalent during passive scattering proton therapy.
        Phys Med Biol. 2007; 52: 4481-4496
        • Zhang R.
        • Pérez-Andujar A.
        • Fontenot J.
        • Taddei P.
        • Newhauser W.
        An analytic model of neutron ambient dose equivalent and equivalent dose for proton radiotherapy.
        Phys Med Biol. 2010; 55: 6975-6985
        • Pérez-Andújar A.
        • Zhang R.
        • Newhauser W.
        Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy.
        Med Phys. 2013; 40: 1714-1725
        • Hendricks J.S.
        • McKinney G.W.
        • Durkee J.W.
        • Finch J.P.
        • Fensin M.L.
        • James M.R.
        • et al.
        MCNPX, version 26C. Report: LA-UR-06–7991.
        Los Alamos National Laboratory, USA2006
        • Martinetti F.
        • Donadille L.
        • Delacroix S.
        • Nauraye C.
        • De Oliveira A.
        • Clairand I.
        • et al.
        Monte Carlo modeling of a protontherapy beam line dedicated to ophtalmologic treatments.
        Nucl Technol. 2009; 168: 721-727
        • Farah J.
        • Martinetti F.
        • Sayah R.
        • Donadille L.
        • Lacoste V.
        • Trompier F.
        • et al.
        Monte Carlo modeling of proton therapy installations: a global experimental method to validate secondary neutron dose calculations.
        Phys Med Biol. 2014; 59: 2747-2765
        • Polf J.C.
        • Newhauser W.D.
        Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams.
        Phys Med Biol. 2005; 50: 3859-3873
        • Pérez-Andújar A.
        • Newhauser W.
        • DeLuca P.
        Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.
        Phys Med Biol. 2009; 54: 993-1008
        • International Commission on Radiological Protection
        Conversion coefficients for use in radiological protection against external radiation.
        ICRP Publ 74 Ann ICRP. 1996; 26
        • Levenberg K.
        A method for the solution of certain problems in least squares.
        Q Appl Math. 1944; 2: 164-168
        • Marquardt D.
        An algorithm for least-squares estimation of nonlinear parameters.
        SIAM J Appl Math. 1963; 11: 431-441
        • Burgkhardt B.
        • Fieg G.
        • Klett A.
        • Plewnia A.
        • Siebert B.R.L.
        The neutron fluence and H*(10) response of the new LB 6411 REM counter.
        Radiat Prot Dosimetry. 1997; 70: 361-364
        • Olsher R.H.
        • Hsu H.
        • Beverding A.
        • Kleck J.H.
        • Casson W.H.
        • Vasilik D.G.
        • et al.
        WENDI: an improved neutron REM meter.
        Health Phys. 2000; 79: 170-181
        • Silari M.
        • Agosteo S.
        • Beck P.
        • Bedogni R.
        • Cale E.
        • Caresana M.
        • et al.
        Intercomparison of radiation protection devices in a high-energy stray neutron field. Part III: instrument response.
        Radiat Meas. 2009; 44: 673-691
        • Fontenot J.
        • Taddei P.
        • Zheng Y.
        • Mirkovic D.
        • Jordan T.
        • Newhauser W.
        Equivalent dose and effective dose from stray radiation during passively scattered proton radiotherapy for prostate cancer.
        Phys Med Biol. 2008; 53: 1677-1688
        • Athar B.S.
        • Paganetti H.
        Neutron equivalent doses and associated lifetime cancer incidence risks for head & neck and spinal proton therapy.
        Phys Med Biol. 2009; 54: 4907-4926
        • Takada H.
        Nuclear medium effects in the intranuclear cascade calculation.
        J Nucl Sci Technol. 1996; 33: 275-282
        • Tayama R.
        • Handa H.
        • Hayashi K.
        • Nakano H.
        • Sasamoto N.
        • Nakashma H.
        • et al.
        Benchmark calculations of neutron yields and dose equivalent from thick iron target for 52–256 MeV protons.
        Nucl Eng Des. 2002; 213: 119-131