Advertisement
Original Paper| Volume 32, ISSUE 4, P600-606, April 2016

Lung stereotactic ablative body radiotherapy: A large scale multi-institutional planning comparison for interpreting results of multi-institutional studies

Published:April 06, 2016DOI:https://doi.org/10.1016/j.ejmp.2016.03.015

      Highlights

      • To compare from dosimetric and equivalent doses point of view, SABR plans of lung cancer patients from 26 centers.
      • To compare plans with various TPS’s, delivery technologies and dose normalization approaches.
      • To analyze the gEUD2, MLD2 and constraints fulfillment against planner expertise and involved technology.

      Abstract

      Purpose

      A large-scale multi-institutional planning comparison on lung cancer SABR is presented with the aim of investigating possible criticism in carrying out retrospective multicentre data analysis from a dosimetric perspective.

      Methods

      Five CT series were sent to the participants. The dose prescription to PTV was 54 Gy in 3 fractions of 18 Gy. The plans were compared in terms of PTV-gEUD2 (generalized Equivalent Uniform Dose equivalent to 2 Gy), mean dose to PTV, Homogeneity Index (PTV-HI), Conformity Index (PTV-CI) and Gradient Index (PTV-GI). We calculated the maximum dose for each OAR (organ at risk) considered as well as the MLD2 (mean lung dose equivalent to 2 Gy). The data were stratified according to expertise and technology.

      Results

      Twenty-six centers equipped with Linacs, 3DCRT (4% – 1 center), static IMRT (8% – 2 centers), VMAT (76% – 20 centers), CyberKnife (4% – 1 center), and Tomotherapy (8% – 2 centers) collaborated. Significant PTV-gEUD2 differences were observed (range: 105–161 Gy); mean-PTV dose, PTV-HI, PTV-CI, and PTV-GI were, respectively, 56.8 ± 3.4 Gy, 14.2 ± 10.1%, 0.70 ± 0.15, and 4.9 ± 1.9. Significant correlations for PTV-gEUD2 versus PTV-HI, and MLD2 versus PTV-GI, were observed.

      Conclusions

      The differences in terms of PTV-gEUD2 may suggest the inclusion of PTV-gEUD2 calculation for retrospective data inter-comparison.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cykert S.
        • Dilworth-Anderson P.
        • Monroe M.H.
        • Walker P.
        • McGuire F.R.
        • Corbie-Smith G.
        • et al.
        Factors associated with decisions to undergo surgery among patients with newly diagnosed early stage lung cancer.
        J Am Med Assoc. 2010; 303: 2368-2376
        • Onishi H.
        • Araki T.
        • Shirato H.
        • Nagata Y.
        • Hiraoka M.
        • Gomi K.
        • et al.
        Stereotactic hypofractionated high-dose irradiation for stage I non small cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study.
        Cancer. 2004; 101: 1623-1631
        • Baumann P.
        • Nyman J.
        • Hoyer M.
        • Wennberg B.
        • Gagliardi G.
        • Lax I.
        • et al.
        Outcome in a prospective phase II trial of medically inoperable stage I non small-cell lung cancer patients treated with stereotactic body radiotherapy.
        J Clin Oncol. 2009; 27: 3290-3296
        • Timmerman R.
        • Paulus R.
        • Galvin J.
        • Michalski J.
        • Straube W.
        • Bradley J.
        • et al.
        Stereotactic body radiation therapy for inoperable early stage lung cancer.
        J Am Med Assoc. 2010; 303: 1070-1076
        • Das I.J.
        • Cheng C.W.
        • Chopra K.L.
        • Mitra R.K.
        • Srivastava S.P.
        • Glatstein E.
        Intensity modulated radiation therapy dose prescription, recording, and delivery: patterns of variability among institutions and treatment planning systems.
        J Natl Cancer Inst. 2008; 100: 300-307
        • Marino C.
        • Villaggi E.
        • Maggi G.
        • Esposito M.
        • Strigari L.
        • Bonanno E.
        • et al.
        A Feasibility dosimetric study on prostate cancer: are we ready for a multicenter clinical trial on SBRT?.
        Strahlenther Onkol. 2015; 191: 573-581
        • Benedict S.
        • Yenice K.
        • Followill D.
        • Galvin J.M.
        • Hinson W.
        • Kavanagh B.
        • et al.
        Stereotactic body radiation therapy: the report of AAPM task group 101.
        Med Phys. 2010; 37: 4078-4101
        • Niemierko A.
        Reporting and analyzing dose distributions: a concept of equivalent uniform dose.
        Med Phys. 1997; 24: 103-110
        • Gay H.A.
        • Niemierko A.
        A free program for calculating Eud-based Ntcp and Tcp in external beam radiotherapy.
        Phys Med. 2007; 23: 115-257
        • Ricardi U.
        • Filippi A.R.
        • Guarneri A.
        • Giglioli F.R.
        • Mantovani C.
        • Fiandra C.
        • et al.
        Dosimetric predictors of radiation-induced lung injury in stereotactic body radiation therapy.
        Acta Oncol. 2008; 27: 1-7
        • Oku Y.
        • Takeda A.
        • Kunieda E.
        • Sudo Y.
        • Oooka Y.
        • Aoki Y.
        • et al.
        Analysis of suitable prescribed isodose line fitting to planning target volume in stereotactic body radiotherapy using dynamic conformal multiple arc therapy.
        Pract Radiat Oncol. 2011; 2: 46-53
        • Matsuo Y.
        • Takayama K.
        • Nagata Y.
        • Takayama K.
        • Sakamoto T.
        • Sakamoto M.
        • et al.
        Interinstitutional variations in planning for stereotactic body radiation therapy for lung cancer.
        Int J Radiat Oncol Biol Phys. 2007; 68: 416-425
        • Nishio T.
        • Kunieda E.
        • Shirato H.
        • Ishikura S.
        • Onishi H.
        • Tateoka K.
        • et al.
        Dosimetric verification in participating institutions in a stereotactic body radiotherapy trial for stage I non-small cell lung cancer: Japan clinical oncology group trial (JCOG0403).
        Phys Med Biol. 2006; 51: 5409-5417
        • Peters L.J.
        • O’Sullivan B.
        • Giralt J.
        • Fitzgerald T.J.
        • Trotti A.
        • Bernier J.
        • et al.
        Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02.
        J Clin Oncol. 2010; 28: 2996-3001
        • Esposito M.
        • Maggi G.
        • Marino C.
        • Bottalico L.
        • Cagni E.
        • Carbonini C.
        • et al.
        Multicentre treatment planning inter-comparison in a national context: the liver stereotactic ablative radiotherapy case.
        Phys Med. 2016; 32: 277-283
        • Widder J.
        • Hollander M.
        • Ubbels J.F.
        • Bolt R.A.
        • Langendijk J.A.
        Optimizing dose prescription in stereotactic body radiotherapy for lung tumours using Monte Carlo dose calculation.
        Radiother Oncol. 2010; 94: 42-46
        • International Commission on Radiation Units and Measurements
        ICRU report 62: prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50).
        1999
        • International Commission on Radiation Units and Measurements
        ICRU report 83: prescribing, recording, and reporting photon-beam intensity modulated radiation therapy (IMRT).
        J ICRU. 2010; 10: 1-10
        • Kavanagh B.D.
        • Timmerman R.D.
        • Benedict S.H.
        • Wu Q.
        • Schefter T.E.
        • Stuhr K.
        • et al.
        How should we describe the radiobiologic effect of extracranial stereotactic radiosurgery: equivalent uniform dose or tumor control probability?.
        Med Phys. 2003; 30: 321-324
        • Fowler J.F.
        • Tomé W.A.
        • Fenwick J.D.
        • Mehta M.P.
        A challenge to traditional radiation oncology.
        Int J Radiat Oncol Biol Phys. 2004; 60: 1241-1256
        • McCammon R.
        • Schefter T.E.
        • Gaspar L.E.
        • Zaemisch R.
        • Gravdahl D.
        • Kavanagh B.
        Observation of a dose–control relationship for lung and liver tumors after stereotactic body radiation therapy.
        Int J Radiat Oncol Biol Phys. 2009; 73: 112-118
        • Latifi K.
        • Oliver J.
        • Baker R.
        • Dilling T.J.
        • Stevens C.W.
        • Kim J.
        • et al.
        Study of 201 non small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithm.
        Int J Radiat Oncol Biol Phys. 2014; 88: 1108-1113
        • Strigari L.
        • Benassi M.
        • Sarnelli A.
        • Polico R.
        • D’Andrea M.A.
        Modified hypoxia-based TCP model to investigate the clinical outcome of stereotactic hypofractionated regimes for early stage non-small-cell lung cancer (NSCLC).
        Med Phys. 2012; 39: 4502-4514
        • Timmerman R.
        • McGarry R.
        • Yiannoutsos C.
        • Papiez L.
        • Tudor K.
        • DeLuca J.
        • et al.
        Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer.
        J Clin Oncol. 2006; 24: 4833-4839
        • Milano M.T.
        • Constine L.S.
        • Okunieff P.
        Normal tissue toxicity after small field hypofractionated stereotactic body radiation.
        Radiat Oncol. 2008; 3: 36
        • Glatstein E.
        Hypofractionation, long-term effects, and the alpha/beta ratio.
        Int J Radiat Oncol Biol Phys. 2008; 72: 11-12
        • Aarup L.R.
        • Nahum A.E.
        • Zacharatou C.
        • Juhler-Nøttrup T.
        • Knöös T.
        • Nyström H.
        • et al.
        The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage.
        Radiother Oncol. 2009; 91: 405-414
        • Kry S.F.
        • Alvarez P.
        • Molineu A.
        • Amador C.
        • Galvin J.
        • Followill D.S.
        Algorithms used in heterogeneous dose calculations show systematic differences as measured with the radiological physics center’s anthropomorphic thorax phantom used for RTOG credentialing.
        Int J Radiat Oncol Biol Phys. 2013; 85: e95-e100
        • Sini C.
        • Broggi S.
        • Fiorino C.
        • Cattaneo G.M.
        • Calandrino R.
        Accuracy of dose calculation algorithms for static and rotational IMRT of lung cancer: a phantom study.
        Phys Med. 2015; 31: 382-390