Advertisement

GEANT4 simulation of cyclotron radioisotope production in a solid target

      Highlights

      • Presentation of the GEANT4 simulation of a medical cyclotron solid target system.
      • Use of a new GEANT4 physics model All High Precision using the database TENDL-2012.
      • Simulated cross section evaluation for 64Ni(p,n)64Cu nuclear reaction up to 18 MeV.
      • Study of 64Cu and other undesired by-products simulated yields on a nickel target.

      Abstract

      The use of radioisotopes in nuclear medicine is essential for diagnosing and treating cancer. The optimization of their production is a key factor in maximizing the production yield and minimizing the associated costs. An efficient approach to this problem is the use of Monte Carlo simulations prior to experimentation. By predicting isotopes yields, one can study the isotope of interest expected activity for different energy ranges. One can also study the target contamination with other radioisotopes, especially undesired radioisotopes of the wanted chemical element which are difficult to separate from the irradiated target and might result in increasing the dose when delivering the radiopharmaceutical product to the patient.
      The aim of this work is to build and validate a Monte Carlo simulation platform using the GEANT4 toolkit to model the solid target system of the South Australian Health and Medical Research Institute (SAHMRI) GE Healthcare PETtrace cyclotron. It includes a GEANT4 Graphical User Interface (GUI) where the user can modify simulation parameters such as the energy, shape and current of the proton beam, the target geometry and material, the foil geometry and material and the time of irradiation.
      The paper describes the simulation and presents a comparison of simulated and experimental/theoretical yields for various nuclear reactions on an enriched nickel 64 target using the GEANT4 physics model QGSP_BIC_AllHP, a model recently developed to evaluate with high precision the interaction of protons with energies below 200 MeV available in Geant4 version 10.1. The simulation yield of the 64Ni(p,n)64Cu reaction was found to be 7.67  ±  0.074 mCi · μ A−1 for a target energy range of 9–12 MeV. Szelecsenyi et al. (1993) gives a theoretical yield of 6.71 mCi · μ A−1 and an experimental yield of 6.38 mCi · μ A−1. The 64Ni(p,n)64Cu cross section obtained with the simulation was also verified against the yield predicted from the nuclear database TENDL and compared to experimental yield obtained from literature.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Agostinelli S.
        • et al.
        Geant4 – a simulation toolkit.
        Nucl. Instrum. Methods Phys. Res. A. 2003; 506: 250-303
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • Araujo H.
        • Dubois P.A.
        • Asai M.
        • Barrand G.
        • Capra R.
        • Chauvie S.
        • Chytracek R.
        • Cirrone G.A.P.
        • Cooperman G.
        • Cosmo G.
        • Cuttone G.
        • Daquino G.G.
        • Donszelmann M.
        • Dressel M.
        • Folger G.
        • Foppiano F.
        • Generowicz J.
        • Grichine V.
        • Guatelli S.
        • Gumplinger P.
        • Heikkinen A.
        • Hrivnacova I.
        • Howard A.
        • Incerti S.
        • Ivanchenko V.
        • Johnson T.
        • Jones F.
        • Koi T.
        • Kokoulin R.
        • Kossov M.
        • Kurashige H.
        • Lara V.
        • Larsson S.
        • Lei F.
        • Link O.
        • Longo F.
        • Maire M.
        • Mantero A.
        • Mascialino B.
        • McLaren I.
        • Lorenzo P.M.
        • Minamimoto K.
        • Murakami K.
        • Nieminen P.
        • Pandola L.
        • Parlati S.
        • Peralta L.
        • Perl J.
        • Pfeiffer A.
        • Pia M.G.
        • Ribon A.
        • Rodrigues P.
        • Russo G.
        • Sadilov S.
        • Santin G.
        • Sasaki T.
        • Smith D.
        • Starkov N.
        • Tanaka S.
        • Tcherniaev E.
        • Tome B.
        • Trindade A.
        • Truscott P.
        • Urban L.
        • Verderi M.
        • Walkden A.
        • Wellisch J.P.
        • Williams D.C.
        • Wright D.
        • Yoshida H.
        Geant4 developments and applications.
        IEEE Trans. Nucl. Sci. 2006; 53: 270-278
        • Chadwick M.B.
        • Oblozinsky P.
        • Herman M.
        • Greene N.M.
        • et al.
        Endf/b-vii.0: next generation evaluated nuclear data library for nuclear science and technology.
        Nucl. Data Sheets. 2006; 107: 2931-3060
        • Folger G.
        • Ivanchenko V.N.
        • Wellisch J.P.
        The binary cascade.
        Eur. Phys. J. A. 2004; 21: 407-417
        • Heikkinen A.
        • Stepanov N.
        Bertini intra-nuclear cascade implementation in GEANT4.
        in: Computing in High Energy and Nuclear Physics. 2003
        • Hou X.
        • Vuckovic M.
        • Buckley K.
        • Benard F.
        • Schaffer P.
        • Ruth T.
        • Celler A.
        Graphical user interface for yield and dose estimations for cyclotron-produced technetium.
        Phys. Med. Biol. 2014; 59: 3337-3352
        • Koning A.J.
        • Rochman D.
        Modern nuclear data evaluation with the TALYS code system.
        Nucl. Data Sheets. 2012; 113: 2841
        • McCarthy D.W.
        • Shefer R.E.
        • Klinkowstein R.E.
        • Bass L.A.
        • Margeneau W.H.
        • Cutler C.S.
        • Anderson C.J.
        • Welch M.J.
        Efficient production of high specific activity 64Cu using a biomedical cyclotron.
        Nucl. Med. Biol. 1997; 24: 35-43
        • Obata A.
        • Kasamatsu S.
        • McCarthy W.D.
        • Welch M.J.
        • Saji H.
        • Yonekura Y.
        • Fujibayashi Y.
        Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron.
        Nucl. Med. Biol. 2003; 30: 535-539
        • Otuka N.
        • Dupont E.e.a.
        Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC).
        Nucl. Data Sheets. 2014; 120: 272-276
        • Ratcliffe N.
        • Barlow R.
        • Bungau A.
        • Bungau C.
        • Cywinski R.
        GEANT4 target simulations for low energy medical applications.
        in: Proceedings of the 4th International Particle Accelerator, Conference IPAC 2013 JACoW, Shanghai, China. 2013: 3717-3719
        • Rebeles R.A.
        • Van den Winkel P.
        • Hermanne A.
        • Tarkanyi F.
        New Measurement and evaluation of the excitation function of 64Ni(n, p)64Cu reaction for the production of 64Cu.
        Nucl. Instrum. Methods Phys. Res. B. 2009; 267: 457-461
        • Szelecsenyi F.
        • Blessing G.
        • Qaim S.M.
        Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni : possibility of production of No-carrier-added 61Cu and 64Cu at a small cyclotron.
        Appl. Radiat. Isot. 1993; 44: 575-580