Advertisement

Dose calculation algorithm accuracy for small fields in non-homogeneous media: The lung SBRT case

  • Antonella Fogliata
    Correspondence
    Corresponding author.
    Affiliations
    Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, via Manzoni 56, 20089 Milan-Rozzano, Italy
    Search for articles by this author
  • Luca Cozzi
    Affiliations
    Humanitas Research Hospital and Cancer Center, Radiotherapy and Radiosurgery Dept, via Manzoni 56, 20089 Milan-Rozzano, Italy

    Humanitas University, Biomedical Science Faculty, via Manzoni 118, 20089 Milan-Rozzano, Italy
    Search for articles by this author
Published:November 24, 2016DOI:https://doi.org/10.1016/j.ejmp.2016.11.104

      Highlights

      • The literature regarding the lung SBRT dose calculation algorithm accuracy is reviewed.
      • The small field and low density problems are analysed.
      • A summarizing example focuses on the main differences and aspects of the main three classes of dose calculation algorithms.

      Abstract

      This review addresses the theme of dose calculation accuracy in the case of the stereotactic treatment of lung lesions. Based on the classical categories of type “a”, “b” and “c” algorithms (according to their degree of complexity in the management of charged particle transport), a summary of findings from literature is reported.
      Two main critical areas have been identified: the use of small fields and the presence of low density medium. Concerning the latter point, the algorithm accuracy is intrinsic of the algorithm core, and, notwithstanding the materials discretization and their chemical composition knowledge, type “c” are, at the most, able to reproduce the actual physical dose distribution in heterogeneous media. For what concerns the small field management, the final accuracy could be strongly related to the beam configuration appropriateness in the TPS (as well for MC this relates to the proper linac head description).
      As a very crude summary, type “a” should be considered as unsuitable for this kind of treatment calculations (with differences of the order of 20–30%), while type “b” and “c” could keep their accuracy approximatively within 10 and 5%, respectively.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Das I.J.
        • Ding G.X.
        • Ahnesjö A.
        Small fields: nonequilibrium radiation dosimetry.
        Med Phys. 2008; 35: 206-215
        • Aspradakis M.M.
        • Byrne J.P.
        • Palmans H.
        • et al.
        Small field MV photon dosimetry.
        Institute of Physics and Engineering in Medicine, York2010
        • Papanikolau N.
        • Battista J.J.
        • Boyer A.L.
        • et al.
        Tissue inhomogeneity corrections for megavoltage photon beams.
        AAPM Report no. 85. Madison. Medical Physics Publishing, WI2004
        • Knöös T.
        • Wieslander E.
        • Cozzi L.
        • et al.
        Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations.
        Phys Med Biol. 2006; 51: 5785-5807
        • Ahnesjö A.
        Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media.
        Med Phys. 1989; 16: 577-592
        • Ulmer W.
        • Harder D.
        A triple gaussian pencil beam model for photon beam treatment planning.
        Z Med Phys. 1995; 5: 25-30
        • Vassiliev O.
        • Wareing T.
        • McGhee J.
        • et al.
        Validation of a new grid based Blotzmann equation solver for dose calculation in radiotherapy with photon beams.
        Phys Med Biol. 2010; 55: 581-598
        • Knöös T.
        • Ahnesjö A.
        • Nilsson P.
        • Weber L.
        Limitations of a pencil beam approach to photon dose calculations in lung tissue.
        Phys Med Biol. 1995; 40: 1411-1420
      1. Radiation Therapy Oncology Group. Available at: http://www.rtog.org [accessed September, 2016].

        • Li J.
        • Galvin J.
        • Harrison A.
        • et al.
        Dosimetric verification using Monte Carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy.
        Int J Radiat Oncol Biol Phys. 2012; 84: 508-513
        • Rana S.
        • Rogers K.
        • Pokharel S.
        • Cheng C.Y.
        Evaluation of Acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc.
        J Appl Clin Med Phys. 2014; 15: 118-129
        • Harada K.
        • Katoh N.
        • Suzuki R.
        • et al.
        Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT).
        Phys Med. 2016; 32: 305-311
        • Carrasco P.
        • Jornet N.
        • Kuch M.A.
        • et al.
        Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium.
        Med Phys. 2004; 31: 2899-2911
        • Fogliata A.
        • Vanetti E.
        • Albers D.
        • et al.
        On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations.
        Phys Med Biol. 2007; 52: 1363-1385
        • Wilcox E.E.
        • Daskalov G.M.
        Accuracy of dose measurements and calculations within and beyond heterogeneous tissues for 6 MV photon fields smaller than 4 cm produced by Cyberknife.
        Med Phys. 2008; 35: 2259-2266
        • Aarup L.R.
        • Nahum A.E.
        • Zacharatou C.
        • et al.
        The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage.
        Radiother Oncol. 2009; 91: 405-414
        • Seppala J.
        • Suilamo S.
        • Kulmala J.
        • et al.
        A dosimetric phantom study of dose accuracy and build-up effects using IMRT and RapidArc stereotactic irradiation of lung tumours.
        Radiat Oncol. 2012; 7: 79
        • Miura H.
        • Masai N.
        • Oh R.J.
        • et al.
        Clinical introduction of Monte Carlo treatment planning for lung stereotactic body radiotherapy.
        J Appl Clin Med Phys. 2014; 15: 38-46
        • Dobler B.
        • Walter C.
        • Knopf A.
        • et al.
        Optimization of extracranial stereotactic radiation therapy of small lun lesions using accurate dose calculation algorithms.
        Rad Onc. 2006; 1: 45
        • Sharma S.C.
        • Ott J.T.
        • Williams J.B.
        • Dickow D.
        Clinical implications of adopting Monte Carlo treatment planning for CyberKnife.
        J Appl Clin Med Phys. 2010; 11: 170-175
        • Koelbl O.
        • Krieger T.
        • Haedinger O.
        • et al.
        Influence of calculation algorithm on dose distribution in irradiation of non-small cell lung cancer (NSCLC).
        Strahlenther Onkol. 2004; 180: 783-788
        • Troeller A.
        • Gamy S.
        • Pachmann S.
        • et al.
        Seterotactic radiotherapy of intrapulmonary lesions: comparison of different dose calculation algorithms for Oncentra MasterPlan.
        Radiat Oncol. 2015; 10: 51
        • Rassiah-Szegedi P.
        • Salter B.J.
        • Fuller C.D.
        • et al.
        Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT).
        Acta Oncol. 2006; 45: 989-994
        • Liu H.
        • Zhuang T.
        • Stephans K.
        • et al.
        Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT.
        J Appl Clin Med Phys. 2015; 16: 91-99
        • Wu V.W.C.
        • Tam K.W.
        • Tong S.M.
        Evaluation of the influence of tumor location and size on the difference of dose calculation between Ray Tracing algorithm and Fast Monte Carlo algorithm in stereotactic body radiotherapy of non-small cell lung cancer using CyberKnife.
        J Appl Clin Med Phys. 2013; 14: 68-78
        • Bibault J.E.
        • Mirabel X.
        • Lacornerie T.
        • et al.
        Adapted prescription dose for Monte Carlo algorithm in lung SBRT: clinical outcome on 205 patients.
        PLoS ONE. 2015; 10: e0133617
        • Ojala J.J.
        • Kapanen M.K.
        • Hyödynmaa S.J.
        • et al.
        Performance of dose calculation algorithms for three generations in lung SBRT: comparison with full Monte Carlo-based dose distribution.
        J Appl Clin Med Phys. 2014; 15: 4-18
        • Song J.H.
        • Kang K.M.
        • Choi H.S.
        • et al.
        Comparing the clinical outcomes in stereotactic body radiotherapy for lung tumors between Ray-Tracing and Monte-Carlo algorithms.
        Oncotarget. 2015; 7: 19045-19053
        • Latifi K.
        • Oliver J.
        • Baker R.
        • et al.
        Study of 201 non-small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithms.
        Int J Radiat Oncol Biol Phys. 2014; 88: 1108-1113
        • Tsuruta Y.
        • Nakata M.
        • Nakamura M.
        • et al.
        Dosimetric comparison of Acuros XB, AAA and XVMC in stereotactic body radiotherapy for lung cancer.
        Med Phys. 2014; 41: 081715
        • Babu Alagar A.G.
        • Mani G.K.
        • Karunakaran
        Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.
        J Appl Clin Med Phys. 2016; 17: 132-142
        • Chow J.C.L.
        • Leung M.K.K.
        • Van Dyk J.
        Variations of lung density and geometry on inhomogeneity correction algorithms: a Monte Carlo dosimetric evaluation.
        Med Phys. 2009; 36: 3619-3630
        • Calvo O.I.
        • Gutiérrez A.N.
        • Stathakis S.
        • et al.
        On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT.
        J Appl Clin Med Phys. 2012; 13: 43-59
        • Fotina I.
        • Kragl G.
        • Kroupa B.
        • et al.
        Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm.
        Strahlenther Onkol. 2011; 187: 433-441
        • Luo W.
        • Mecham A.
        • Xie X.
        • et al.
        Monte Carlo dose verification for lung SBRT with CMS/XiO superposition algorithm.
        Biomed Phys Eng Express. 2016; 2: 015020
        • Hardcastle N.
        • Obom B.M.
        • Haworth A.
        On the use of a convolution-superposition algorithm for plan checking in lung stereotactic body radiation therapy.
        J Appl Clin Med Phys. 2016; 17: 99-110
        • Mampuya W.A.
        • Nakamura M.
        • Hirose Y.
        • et al.
        Difference in dose-volumetric data between the analytical anisotropic algorithm, the dose-to-medium, and the dose-to-water reporting modes of the Acuros XB for lung stereotactic body radiation therapy.
        J Appl Clin Med Phys. 2016; 17: 341-347
        • Huang B.
        • Wu L.
        • Lin P.
        • Chen C.
        Dose calculation of Acuros XB and Anisotropic Analytical Algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size.
        Radiat Oncol. 2015; 10: 53
        • Fogliata A.
        • Nicolini G.
        • Clivio A.
        • et al.
        Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media.
        Radiat Oncol. 2011; 6: 82
        • Fragoso M.
        • Wen N.
        • Kumar S.
        • et al.
        Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning.
        Phys Med Biol. 2010; 55: 4445-4464
        • Fogliata A.
        • Nicolini G.
        • Clivio A.
        • et al.
        Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc stereotactic treatments.
        Med Phys. 2011; 38: 6228-6237
        • Kron T.
        • Clivio A.
        • Vanetti E.
        • et al.
        Small field segments surrounded by large areas only shielded by a multileaf collimator: comparison of experiments and dose calculation.
        Med Phys. 2012; 39: 7480-7489
        • Fogliata A.
        • Lobefalo F.
        • Reggiori G.
        • et al.
        Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms.
        Med Phys. 2016; 43: 5685-5694