188Re image performance assessment using small animal multi-pinhole SPECT/PET/CT system

Published:December 19, 2016DOI:


      • The performance of a pre-clinical SPECT/CT system for 188Re imaging is investigated.
      • Image quality and image quantification is assessed for two multi-pinhole collimators.
      • Monte-Carlo simulations of the pre-clinical SPECT system were performed.
      • Image quality and image quantification of 188Re was comparable to 99mTc performance.
      • 188Re images suffered from higher noise due to large number of down-scatter photons.



      The goal of this study was to investigate the performance of a pre-clinical SPECT/PET/CT system for 188Re imaging.


      Phantom experiments were performed aiming to assess the characteristics of two multi-pinhole collimators: ultra-high resolution collimator (UHRC) and high-energy ultra high resolution collimator (HE-URHC) for imaging 188Re. The spatial resolution, image contrast and contrast-to-noise ratio (CNR) were investigated using micro-Jaszczak phantoms. Additionally, the quantification accuracy of 188Re images was evaluated using two custom-designed phantoms. The 188Re images were compared to those obtained with 99mTc (gold standard); the acquired energy spectra were analyzed and Monte-Carlo simulations of the UHRC were performed. To verify our findings, a C57BL/6-mouse was injected with 188Re-microspheres and scanned with both collimators.


      The spatial resolution achieved in 188Re images was comparable to that of 99mTc. Acquisitions using HE-UHRC yielded 188Re images with higher contrast and CNR than UHRC. Studies of quantitative accuracy of 188Re images resulted in <10% errors for both collimators when the activity was calculated within a small VOI around the object of interest. Similar quantification accuracy was achieved for 99mTc. However, 188Re images showed much higher levels of noise in the background. Monte-Carlo simulations showed that 188Re imaging with UHRC is severely affected by down-scattered photons from high-energy emissions. The mouse images showed similar biodistribution of 188Re-microspheres for both collimators.


      VECTor/CT provided 188Re images quantitatively accurate and with quality comparable to 99mTc. However, due to large penetration of UHRC by high-energy photons, the use of the HE-UHRC for imaging 188Re in VECTor/CT is recommended.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Dash A, Knapp FF (Russ) J. RSC advances an overview of radioisotope separation. RSC Adv 2015;5:39012–36.

        • Lepareur N.
        • Ardisson V.
        • Noiret N.
        • Garin E.
        (188)Re-SSS/lipiodol: development of a potential treatment for HCC from bench to bedside.
        Int J Mol Imag. 2012; : 9278306
        • ter Heine R.
        • Lange R.
        • Breukels O.B.
        • Bloemendal H.J.
        • Rummenie R.G.
        • Wakker A.M.
        • et al.
        Bench to bedside development of GMP grade Rhenium-188-HEDP, a radiopharmaceutical for targeted treatment of painful bone metastases.
        Int J Pharm. 2014; 465: 317-324
        • Ni H.C.
        • Yu C.Y.
        • Chen S.J.
        • Chen L.C.
        • Lin C.H.
        • Lee W.-C.
        • et al.
        Preparation and imaging of rhenium-188 labeled human serum albumin microsphere in orthotopic hepatoma rats.
        Appl Radiat Isot. 2015; 99: 117-121
        • Franc B.L.
        • Acton P.D.
        • Mari C.
        • Hasegawa B.H.
        Small-animal SPECT and SPECT/CT: important tools for preclinical investigation.
        J Nucl Med. 2008; 49: 1651-1663
        • Clark D.P.
        • Badea C.T.
        Micro-CT of rodents: state-of-the-art and future perspectives.
        Phys Med. 2014; 30: 619-634
        • Kagadis G.C.
        • Loudos G.
        • Katsanos K.
        • Langer S.G.
        • Nikiforidis G.C.
        In vivo small animal imaging: current status and future prospects.
        Med Phys. 2010; 37: 6421-6442
        • Liu X.
        • Laforest R.
        Quantitative small animal PET imaging with nonconventional nuclides.
        Nucl Med Biol. 2009; 36: 551-559
        • Magota K.
        • Kubo N.
        • Kuge Y.
        • Nishijima K.I.
        • Zhao S.
        • Tamaki N.
        Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging.
        Eur J Nucl Med Mol Imag. 2011; 38: 742-752
        • Goertzen A.L.
        • Bao Q.
        • Bergeron M.
        • Blankemeyer E.
        • Blinder S.
        • Canadas M.
        • et al.
        NEMA NU 4-2008 comparison of preclinical PET imaging systems.
        J Nucl Med. 2012; 53: 1300-1309
      2. Sánchez F, Orero A, Soriano A, Correcher C, Conde P, González A, et al. ALBIRA: a small animal PET/SPECT/CT imaging system. Med Phys 2013;40:051906 (11 p).

        • Vandeghinste B.
        • Van Holen R.
        • Vanhove C.
        • De Vos F.
        • Vandenberghe S.
        • Staelens S.
        Use of a ray-based reconstruction algorithm to accurately quantify preclinical microspect images.
        Mol Imag. 2014; 13: 1-13
        • Rodríguez-Villafuerte M.
        • Yang Y.
        • Cherry S.R.
        A Monte Carlo investigation of the spatial resolution performance of a small-animal PET scanner designed for mouse brain imaging studies.
        Phys Med. 2014; 30: 76-85
        • van der Have F.
        • Vastenhouw B.
        • Ramakers R.M.
        • Branderhorst W.
        • Krah J.O.
        • Ji C.
        • et al.
        U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging.
        J Nucl Med. 2009; 50: 599-605
        • Ivashchenko O.
        • van der Have F.
        • Villena J.L.
        • Groen H.C.
        • Ramakers R.M.
        • Weinans H.H.
        • et al.
        Quarter-millimeter-resolution molecular mouse imaging with U-SPECT+.
        Mol Imag. 2014; 13: 1-8
      3. Wu C, Van Der Have F, Vastenhouw B, Dierckx R a JO, Paans AMJ, Beekman FJ. Absolute quantitative total-body small-animal SPECT with focusing pinholes. Eur J Nucl Med Mol Imag 2010;37:2127–35.

      4. Wu C, de Jong JR, Gratama van Andel H a, van der Have F, Vastenhouw B, Laverman P, et al. Quantitative multi-pinhole small-animal SPECT: uniform versus non-uniform Chang attenuation correction. Phys Med Biol 2011;56:N183–93.

        • van der Have F.
        • Ivashchenko O.
        • Goorden M.C.
        • Ramakers R.M.
        • Beekman F.J.
        High-resolution clustered-pinhole 131Iodine SPECT imaging in mice.
        Nucl Med Biol. 2016; 43: 506-511
        • Visser E.P.
        • Harteveld A.A.
        • Meeuwis A.P.W.
        • Disselhorst J.A.
        • Beekman F.J.
        • Oyen W.J.G.
        • et al.
        Image quality phantom and parameters for high spatial resolution small-animal SPECT.
        Nucl Instr Methods Phys Res A. 2011; 654: 539-545
        • Ivashchenko O.
        • van der Have F.
        • Goorden M.C.
        • Ramakers R.M.
        • Beekman F.J.
        Ultra-high-sensitivity submillimeter mouse SPECT.
        J Nucl Med. 2015; 56: 470-475
        • Walker M.D.
        • Goorden M.C.
        • Dinelle K.
        • Ramakers R.M.
        • Blinder S.
        • Shirmohammad M.
        • et al.
        Performance assessment of a preclinical PET scanner with pinhole collimation by comparison to a coincidence-based small-animal PET scanner.
        J Nucl Med. 2014; 55: 1368-1374
        • Goorden M.C.
        • van der Have F.
        • Kreuger R.
        • Ramakers R.M.
        • Vastenhouw B.
        • Burbach J.P.H.
        • et al.
        VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET.
        J Nucl Med. 2012; 54: 306-312
        • Miwa K.
        • Inubushi M.
        • Takeuchi Y.
        • Katafuchi T.
        • Koizumi M.
        • Saga T.
        • et al.
        Performance characteristics of a novel clustered multi-pinhole technology for simultaneous high-resolution SPECT/PET.
        Ann Nucl Med. 2015; : 460-466
        • de Swart J.
        • Chan H.S.
        • Goorden M.C.
        • Morgenstern A.
        • Bruchertseifer F.
        • Beekman F.J.
        • et al.
        Utilizing high-energy gamma photons for high-resolution 213Bi SPECT in mice.
        J Nucl Med. 2015; : 486-492
        • Singh B.
        Nuclear data sheets for A = 188.
        Nucl Data Sheets. 2002; 95: 387-541
        • Häfeli U.O.
        • Saatchi K.
        • Elischer P.
        • Misri R.
        • Bokharaei M.
        • Renée Labiris N.
        • et al.
        Lung perfusion imaging with monosized biodegradable microspheres.
        Biomacromolecules. 2010; 11: 561-567
        • Vaissier P.E.B.
        • Goorden M.C.
        • Vastenhouw B.
        • van der Have F.
        • Ramakers R.M.
        • Beekman F.J.
        Fast spiral SPECT with stationary - cameras and focusing pinholes.
        J Nucl Med. 2012; 53: 1292-1299
        • Ogawa K.
        • Harata Y.
        • Ichihara T.
        • Kubo A.
        • Hashimoto S.
        A practical method for position-dependent Compton-scatter correction in single photon emission CT.
        IEEE Trans Med Imag. 1991; 10: 408-412
        • Branderhorst W.
        • Vastenhouw B.
        • Beekman F.J.
        Pixel-based subsets for rapid multi-pinhole SPECT reconstruction.
        Phys Med Biol. 2010; 55: 2023-2034
        • Chang L.
        A method for attenuation correction in radionuclide computed tomography.
        IEEE Trans Nucl Sci. 1978; 25: 638-643
        • Lange R.
        • de Klerk J.M.H.
        • Bloemendal H.J.
        • Ramakers R.M.
        • Beekman F.J.
        • van der Westerlaken M.M.L.
        • et al.
        Drug composition matters: the influence of carrier concentration on the radiochemical purity, hydroxyapatite affinity and in-vivo bone accumulation of the therapeutic radiopharmaceutical 188Rhenium-HEDP.
        Nucl Med Biol. 2015; 42: 465-469
        • Branderhorst W.
        • Vastenhouw B.
        • van der Have F.
        • Blezer E.L.A.
        • Bleeker W.K.
        • Beekman F.J.
        Targeted multi-pinhole SPECT.
        Eur J Nucl Med Mol Imag. 2011; 38: 552-561
        • Jan S.
        • Santin G.
        • Strul D.
        • Staelens S.
        • Assi K.
        GATE: a simulation toolkit for PET and SPECT.
        Phys Med Biol. 2004; 49: 4543-4561
        • Jan S.
        • Benoit D.
        • Becheva E.
        • Carlier T.
        • Cassol F.
        • Descourt P.
        • et al.
        GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy.
        Phys Med Biol. 2011; 56: 881-901
        • Beekman F.
        • van der Have F.
        The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging.
        Eur J Nucl Med Mol Imag. 2007; 34: 151-161
        • Uribe C.F.
        • Esquinas P.L.
        • Gonzalez M.
        • Celler A.
        Characteristics of Bremsstrahlung emissions of 177Lu, 188Re, and 90Y for SPECT/CT quantification in radionuclide therapy.
        Phys Med. 2016; 32: 691-700
        • Spinelli A.E.
        • Boschi F.
        Bremsstrahlung radiation detection for small animal imaging using a CCD detector.
        Phys Med. 2016; 32: 706-708
        • Lehner S.
        • Lang C.
        • Kaissis G.
        • Todica A.
        • Zacherl M.J.
        • Boening G.
        • et al.
        I-124-PET assessment of human sodium iodide symporter reporter gene activity for highly sensitive in vivo monitoring of teratoma formation in mice.
        Mol Imag Biol. 2015; 17: 874-883