Advertisement

Dosimetry applications in GATE Monte Carlo toolkit

Published:February 21, 2017DOI:https://doi.org/10.1016/j.ejmp.2017.02.005

      Highlights

      • GATE simulations for preclinical and clinical medical imaging dosimetry.
      • Realistic radiotherapy simulations for absorbed dose assessment.
      • Personalized dosimetry using MC and computational models.
      • Comparison of GATE dosimetry with other MC codes.
      • Review on the GATE dosimetry simulations.

      Abstract

      Purpose

      Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies.

      Methods

      GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy.

      Results

      GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms.

      Conclusions

      Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murphy M.J.
        • Balter J.M.
        • Balter S.
        • BenComo J.A.
        • Das I.J.
        • Jiang S.B.
        • et al.
        The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75.
        Med Phys. 2007; 34: 4041-4063
        • Reynaert N.
        • Vandermarck S.
        • Schaart D.
        • Vanderzee W.
        • Vanvlietvroegindeweij C.
        • Tomsej M.
        • et al.
        Monte Carlo treatment planning for photon and electron beams.
        Radiat Phys Chem. 2007; 76: 643-686
        • Nelson W.R.
        • Hirayama H.
        • Rogers D.W.O.
        The EGS4 code system.
        (Report SLAC-265) Stanford Linear Accelerator Center, Stanford, CA1985
        • Halbleib J.A.
        • Kensek R.P.
        • Mehlhom T.A.
        • Valdez G.D.
        • Seltzer S.M.
        • Berger M.J.
        ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
        Sandia National Laboratories, Albuquerue NM1992
        • Brown F.B.
        MCNP - a general Monte Carlo N-particle transport code.
        (v. R. LA-UR-03-1987) Los Alamos National Laboratory, Los Alamos NM2003
        • Sempau J.
        • Fernández-Varea J.M.
        • Acosta E.
        • Salvat F.
        Experimental benchmarks of the Monte Carlo code penelope.
        Nucl Instrum Methods Phys Res Sect B. 2003; 207: 107-123
        • Agostinelli S.
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • Araujo H.
        • Arce P.
        • et al.
        Geant4-a simulation toolkit.
        Nucl Instrum Methods Phys Res Sect A. 2003; 506: 250-303
        • Jan S.
        • Santin G.
        • Strul D.
        • Staeklens S.
        • Assie K.
        • Autret D.
        • et al.
        GATE: A simulation toolkit for PET and SPECT.
        Phys Med Biol. 2004; 49: 4543-4561
        • Jan S.
        • Benoit D.
        • Becheva E.
        • Caarlier T.
        • Cassol F.
        • Descourt P.
        • et al.
        GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy.
        Phys Med Biol. 2011; 56: 881-901
      1. http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:Readout_parameters_for_Radiotherapy_applications:_Actors [Accessed in Feb. 2017].

        • Chetty I.J.
        • Rosu M.
        • Kessler M.L.
        • Fraass B.A.
        • Ten Haken R.K.
        • Kong F.M.
        • et al.
        Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning.
        Int J Radiat Oncol Biol Phys. 2006; 65: 1249-1259
      2. Capote R, Jeraj R, Ma CP, Rogers DWO, Sanchaez-Doblado F, Sempau J, et al. Phase-space database for external beam radiotherapy. IAEA Technical Report 2006; INDC(NDS)-0484.

        • Williamson J.F.
        Monte Carlo evaluation of kerma at a point for photon transport problems.
        Med Phys. 1987; 14: 567-576
        • Smekens F.
        • Létang J.M.
        • Noblet C.
        • Chiavassa S.
        • Delpon G.
        • Freud N.
        • et al.
        Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy.
        Phys Med Biol. 2014; 59: 7703-7715
      3. http://wiki.opengatecollaboration.org/index.php/Users_Guide_V7.2:How_to_use_Gate_on_a_Cluster [Accessed in Feb. 2017].

        • Xu X.G.
        • Eckerman K.F.
        Computational phantoms for radiation dosimetry: a 40-year history of evolution. Handbook of anatomical models for radiation dosimetry.
        CRC Press, 2009
        • Fisher H.L.
        • Snyder W.S.
        Distribution of dose in the body from a source of gamma rays distributed uniformly in an organ. ORNL-4168.
        Oak Ridge National Laboratory, Oak Ridge, TN1967 (p. 245)
        • Segars W.P.
        • Tsui B.M.W.
        MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research.
        Proc IEEE Inst Electr Electron Eng. 2009; 97: 1954-1968
        • Segars W.P.
        • Tsui B.M.W.
        • Frey E.
        Development of a 4D digital mouse phantom for molecular imaging research.
        Mol Imaging Biol. 2004; 6: 149-159
        • Christ A.
        • Kainz W.
        • Hahn E.G.
        • Honegger K.
        • Zefferer M.
        • Neufeld E.
        • et al.
        The Virtual Family - development of surface-based anatomical models of two adults and two children for dosimetric simulations.
        Phys Med Biol. 2010; 21 (N23-38)
        • Segars W.P.
        • Bond J.
        • Frush J.
        • Hon S.
        • Eckersley C.
        • Williams C.H.
        • et al.
        Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization.
        Med Phys. 2013; 40: 043701
        • Norris H.
        • Zhang Y.
        • Bond J.
        • Sturgeon G.M.
        • Minhas A.
        • Tward D.J.
        • et al.
        A set of 4D pediatric XCAT reference phantoms for multimodality research.
        Med Phys. 2014; 41: 033701
        • Bolch W.E.
        • Eckerman K.F.
        • Sgouros G.
        • Thomas S.R.
        MIRD, Pamphlet No. 21: a Generalized Schema for Radiopharmaceutical Dosimetry - Standardization of Nomenclature.
        J Nucl Med. 2009; 50: 477-484
        • Taschereau R.
        • Chatziioannou A.F.
        Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds.
        Med Phys. 2007; 34: 1026-1036
        • Mauxion T.
        • Barbet J.
        • Suhard J.
        • Pouget J.P.
        • Poirot M.
        • Bardiès M.
        Improved realism of hybrid mouse models may not be sufficient to generate reference dosimetric data.
        Med Phys. 2013; 40: 052501
        • Keenan M.S.M.
        • Segars W.
        • Fernald J.
        RADAR realistic animal model series for dose assessment.
        J Nucl Med. 2010; 51: 471-476
        • Kostou T.
        • Papadimitroulas P.
        • Loudos G.
        • Kagadis G.C.
        A preclinical simulated dataset of S-values and investigation of the impact of rescaled organ masses using the MOBY phantom.
        Phys Med Biol. 2016; 61: 2333-2355
        • Lee C.L.
        • Park S.J.
        • Jeon P.H.
        • Jo B.D.
        • Kim H.J.
        Dosimetry in small-animal CT using Monte Carlo simulations.
        JINST. 2016; 11: T01003
        • Parach A.A.
        • Rajabi H.
        • Askari M.A.
        Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code.
        Radiat Environ Biophys. 2011; 50: 441-450
        • Zubal I.G.
        • Harrell C.R.
        • Smith E.O.
        • Rattner Z.
        • Gindi G.
        • Hoffer P.B.
        Computerized three-dimensional segmented human anatomy.
        Med Phys. 1994; 21: 298-305
        • Saeedzadeh E.
        • Sarkar S.
        • Abbaspour Tehrani-Fard A.
        • Ay M.R.
        • Khosravi H.R.
        • Loudos G.
        3D calculation of absorbed dose for 131I-targeted radiotherapy: a Monte Carlo study.
        Radiat Protect Dosim. 2012; 150: 298-305
        • Stabin M.G.
        • Sparks R.B.
        • Crowe E.
        OLINDA/EXM: the second-generation computer software for internal dose assessment in nuclear medicine.
        J Nucl Med. 2005; 46: 1023-1027
      4. Villoing D, McParland B, Suhard J, Ferrer L, Bardiès M. Dosimetric calculation with Monte Carlo simulation of a PET radiotracer: comparison between the standard and the personalized approach. In: Proceedings of the european association of nuclear medicine congress; October 2012.

        • Iliadou V.
        • Papadimitroulas P.
        • Erwin W.D.
        • Kostou T.
        • Loudos G.
        • Kagadis G.C.
        Pediatric nuclear medicine dosimetry: a monte carlo study on S-value variability due to patient specific characteristics.
        Phys Med. 2016; 32: 240
        • Maigne L.
        • Perrot Y.
        • Schaart D.R.
        • Donnarieix D.
        • Breton V.
        Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.
        Phys Med Biol. 2011; 56: 811-827
        • Papadimitroulas P.
        • Loudos G.
        • Nikiforidis G.C.
        • Kagadis G.C.
        A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
        Med Phys. 2012; 39: 5238-5247
        • Loudos G.
        • Tsougos I.
        • Boukis S.
        • Karakatsanis N.
        • Georgoulias P.
        • Theodorou K.
        • et al.
        A radionuclide dosimetry toolkit based on material-specific Monte Carlo dose kernels.
        Nucl Med Commun. 2009; 30: 504-512
        • Marcatili S.
        • Villoing D.
        • Mauxion T.
        • McParland B.J.
        • Bardiès M.
        Model-based versus specific dosimetry in diagnostic context: comparison of three dosimetric approaches.
        Med Phys. 2015; 42: 1288-1296
        • Son K.
        • Cho S.
        • Kim J.S.
        • Han Y.
        • Ju S.G.
        • Choi D.H.
        Evaluation of radiation dose to organs during kilovoltage cone-beam computed tomography using Monte Carlo simulation.
        J Appl Clin Med Phys. 2014; 15: 4556
        • Papadimitroulas P.
        • Kagadis G.C.
        • Ploussi A.
        • Kordolaimi S.
        • Papamichail D.
        • Karavasilis E.
        • et al.
        Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms.
        J Phys: Conf Ser. 2015; 637: 012020
        • Grevillot L.
        • Bertrand D.
        • Dessy F.
        • Freud N.
        • Sarrut D.
        A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4.
        Phys Med Biol. 2011; 56: 5203-5219
        • Benhalouche S.
        • Edel S.
        • Visvikis D.
        • Pradier O.
        • Boussion N.
        Gate Monte Carlo simulation of a 6 MV siemens oncor linear accelerator photon beam: feasibility and preliminary dosimetric study.
        Med Phys. 2011; 38: 3655
        • Grevillot L.
        • Frisson T.
        • Zahra N.
        • Bertrand D.
        • Stichelbaut F.
        • Freud N.
        • et al.
        Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE.
        Nucl Instrum Methods Phys Res Sect B. 2010; 268: 3295-3305
        • Grevillot L.
        • Bertrand D.
        • Dessy F.
        • Freud N.
        • Sarrut D.
        Gate as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans.
        Phys Med Biol. 2012; 57: 4223-4244
        • Rivard M.J.
        • Coursey B.M.
        • DeWerd L.A.
        • Hanson W.F.
        • Huq M.S.
        • Ibbott G.S.
        • et al.
        Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations.
        Med Phys. 2004; 31: 633-674
        • Thiam C.O.
        • Breton V.
        • Donnarieix D.
        • Habib B.
        • Maigne L.
        Validation of a dose deposited by low-energy photons using GATE/GEANT4.
        Phys Med Biol. 2008; 53: 3039-3055
        • Chatzipapas C.
        • Papadimitroulas P.
        • Loudos G.
        • Papanikolaou N.
        • Kagadis G.C.
        SU-F-T-50: evaluation of Monte Carlo simulations performance for pediatric brachytherapy dosimetry.
        Med Phys. 2016; 43: 3472-3473
        • Jan S.
        • Frisson T.
        • Sarrut D.
        Gate simulation of 12C hadrontherapy treatment combined with a PET imaging system for dose monitoring: a feasibility study”.
        IEEE Trans Nucl Sci. 2013; 60: 423-429
        • Robert C.
        • Fourrier N.
        • Sarrut D.
        • Stute S.
        • Gueth P.
        • Grevillot L.
        • et al.
        PET-based dose delivery verification in proton therapy: a GATE based simulation study of five PET system designs in clinical conditions.
        Phys Med Biol. 2013; 58: 6867-6885
        • Perrot Y.
        • Degoul F.
        • Auzeloux P.
        • Bonnet M.
        • Cachin F.
        • Chezal J.M.
        • et al.
        Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand.
        Phys Med Biol. 2014; 59: 2183
        • Belley M.
        • Wang C.
        • Nguyen G.
        • Gunasingha R.
        • Chao N.
        • Chen B.
        • et al.
        Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators.
        Med Phys. 2014; 41: 034101
        • Sarrut D.
        • Bardiès M.
        • Boussion N.
        • Freud N.
        • Jan S.
        • Létang J.M.
        • et al.
        A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications.
        Med Phys. 2014; 41: 064301