Advertisement

About the non-consistency of PTV-based prescription in lung

Published:March 30, 2017DOI:https://doi.org/10.1016/j.ejmp.2017.03.009

      Highlights

      • Shows inconsistency of prescribing to lung PTV volumes for Monte Carlo calculations.
      • Provides data showing that Dose Mass Histograms do not offer a solution either.
      • The suggested solution is to abandon the PTV concept.

      Abstract

      Purpose

      The goal of this study is to show that the PTV concept is inconsistent for prescribing lung treatments when using type B algorithms, which take into account lateral electron transport. It is well known that type A dose calculation algorithms are not capable of calculating dose in lung correctly. Dose calculations should be based on type B algorithms. However, the combination of a type B algorithm with the PTV concept leads to prescription inconsistencies.

      Methods

      A spherical isocentric setup has been simulated, using multiple realistic values for lung density, tumor density and collimator size. Different prescription methods are investigated using Dose-Volume-Histograms (DVH), Dose-Mass-Histograms (DMH), generalized Equivalent Uniform Dose (gEUD) and surrounding isodose percentage.

      Results

      Isodose percentages on the PTV drop down to 50% for small tumors and low lung density. When applying the same PTV prescription to different patients with different lung characteristics, the effective mean dose to the GTV is very different, with factors up to 1.4. The most consistent prescription method seems to be the D 50 % DMH (PTV) DMH point, but is also limited to tumors with size over 1 cm.

      Conclusions

      Even when using the different prescription methods, the prescription to the PTV is not consistent for type B-algorithm based dose calculations if clinical studies should produce coherent data. This combination leads to patients’ GTV with low lung density possibly receiving very high dose compared to patients with higher lung density. The only solution seems to remove the classical PTV concept for type B dose calculations in lung.

      Abbreviations:

      MC (Monte Carlo), PTV (Planning Target Volume), DVH (Dose-Volume Histogram), DMH (Dose-Mass Histogram), gEUD (generalized Equivalent Uniform Dose), FFF (Flattening Filter Free)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vanderstraeten B.
        • Reynaert N.
        • Paelinck L.
        • Madani I.
        • De Wagter C.
        • De Gersem W.
        • et al.
        Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations.
        Med Phys. 2006; 33: 3149-3158https://doi.org/10.1118/1.2241992
        • Miura H.
        • Masai N.
        • Oh R.J.
        • Shiomi H.
        • Yamada K.
        • Sasaki J.
        • et al.
        Clinical introduction of Monte Carlo treatment planning for lung stereotactic body radiotherapy.
        J Appl Clin Med Phys. 2014; 15: 4202
        • Aarup L.R.
        • Nahum A.E.
        • Zacharatou C.
        • Juhler-Nøttrup T.
        • Knöös T.
        • Nyström H.
        • et al.
        The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage.
        Radiother Oncol. 2009; 91: 405-414https://doi.org/10.1016/j.radonc.2009.01.008
        • van der Voort van Zyp N.C.
        • Hoogeman M.S.
        • van de Water S.
        • Levendag P.C.
        • van der Holt B.
        • Heijmen B.J.M.
        • et al.
        Clinical introduction of Monte Carlo treatment planning: a different prescription dose for non-small cell lung cancer according to tumor location and size.
        Radiother Oncol. 2010; 96: 55-60https://doi.org/10.1016/j.radonc.2010.04.009
        • Fogliata A.
        • Cozzi L.
        Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case.
        Phys Medica. 2016; https://doi.org/10.1016/j.ejmp.2016.11.104
        • Van Herk M.
        • Remeijer P.
        • Rasch C.
        • Lebesque J.V.
        The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy.
        Int J Radiat Oncol Biol Phys. 2000; 47: 1121-1135https://doi.org/10.1016/S0360-3016(00)00518-6
        • Giglioli F.
        • Strigari L.
        • Marino C.
        • El Gawhary R.
        • Zani M.
        • Fedele D.
        • et al.
        Lung SABR: a large-scale multi-institutional dosimetric and radiobiological planning comparison.
        Phys Medica. 2016; 32: 29https://doi.org/10.1016/j.ejmp.2016.01.100
        • Elmpt W.van
        • Öllers M.
        • Velders M.
        • Poels K.
        • Mijnheer B.
        • Ruysscher D. De
        • et al.
        Transition from a simple to a more advanced dose calculation algorithm for radiotherapy of non-small cell lung cancer (NSCLC): implications for clinical implementation in an individualized dose-escalation protocol.
        Radiother Oncol. 2008; 88: 326-334https://doi.org/10.1016/j.radonc.2008.07.003
        • Ricardi U.
        • Badellino S.
        • Filippi A.R.
        What do radiation oncologists require for future advancements in lung SBRT?.
        Phys Medica. 2016; : 1-7https://doi.org/10.1016/j.ejmp.2016.11.114
        • Lacornerie T.
        • Lisbona A.
        • Mirabel X.
        • Lartigau E.
        • Reynaert N.
        GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.
        Radiat Oncol. 2014; 9: 223https://doi.org/10.1186/s13014-014-0223-5
        • Nioutsikou E.
        • Webb S.
        • Panakis N.
        • Bortfeld T.
        • Oelfke U.
        Reconsidering the definition of a dose–volume histogram.
        Phys Med Biol. 2005; 50: L17-L19https://doi.org/10.1088/0031-9155/50/11/L01
        • Mavroidis P.
        • Plataniotis G.a.
        • Górka M.A.
        • Lind B.K.
        Comments on “Reconsidering the definition of a dose-volume histogram”–dose-mass histogram (DMH) versus dose-volume histogram (DVH) for predicting radiation-induced pneumonitis.
        Phys Med Biol. 2006; 51: L43-L50https://doi.org/10.1088/0031-9155/51/24/L01
        • Niemierko A.
        Reporting and analyzing dose distributions: a concept of equivalent uniform dose.
        Med Phys. 1997; 24: 103-110https://doi.org/10.1118/1.598154
        • AAPM Task Group 166 TPC
        The Use and QA of Biologically Related Models for Treatment Planning Report of AAPM Task Group 166.
        2012https://doi.org/10.1118/1.3685447
        • Kawrakow I.
        EGSnrc C++ class library.
        (Technical Report PIRS-898)2005
        • Kawrakow I.
        • Kawrakow I.
        The EGSnrc code system: Monte Carlo simulation of electron and photon transport.
        Med Phys. 2013; 34: 2001-2013
        • Rogers D.W.O.
        • Walters B.
        • Kawrakow I.
        BEAMnrc Users Manual.
        Source. 2011; 509: 1-260
        • Reynaert N.
        • van der Marck S.C.
        • Schaart D.R.
        • Van der Zee W.
        • Van Vliet-Vroegindeweij C.
        • Tomsej M.
        • et al.
        Monte Carlo treatment planning for photon and electron beams.
        Radiat Phys Chem. 2007; 76: 643-686https://doi.org/10.1016/j.radphyschem.2006.05.015
        • Wagner A.
        • Crop F.
        • Lacornerie T.
        • Vandevelde F.
        • Reynaert N.
        Use of a liquid ionization chamber for stereotactic radiotherapy dosimetry.
        Phys Med Biol. 2013; 58: 2445-2459https://doi.org/10.1088/0031-9155/58/8/2445
        • Benedict S.H.
        • Yenice K.M.
        • Followill D.
        • Galvin J.M.
        • Hinson W.
        • Kavanagh B.
        • et al.
        Stereotactic body radiation therapy: the report of AAPM Task Group 101.
        Med Phys. 2010; 37: 4078https://doi.org/10.1118/1.3438081
      1. ICRU. ICRU 83 Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). vol. 10. 2010. doi: https://doi.org/10.1093/jicru/ndq025.

        • Rosu M.
        • Chetty I.J.
        • Balter J.M.
        • Kessler M.L.
        • McShan D.L.
        • Ten Haken R.K.
        Dose reconstruction in deforming lung anatomy: dose grid size effects and clinical implications.
        Med Phys. 2005; 32: 2487-2495https://doi.org/10.1118/1.1949749
        • Disher B.
        • Hajdok G.
        • Gaede S.
        • Mulligan M.
        • Battista J.J.
        Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer.
        Phys Med Biol. 2013; 58: 6641-6662https://doi.org/10.1088/0031-9155/58/19/6641
        • Kilburn J.M.
        • Lucas J.T.
        • Soike M.H.
        • Ayala-Peacock D.N.
        • Blackstock A.W.
        • Hinson W.H.
        • et al.
        Is a clinical target volume (CTV) necessary in the treatment of lung cancer in the modern era combining 4-D imaging and image-guided radiotherapy (IGRT)?.
        Cureus. 2016; 8: 1-15https://doi.org/10.7759/cureus.466