The role of dosimetry audit in lung SBRT multi-centre clinical trials

Published:April 05, 2017DOI:


      • Stereotactic Body Radiotherapy in the lung is a challenging technique.
      • High quality clinical trials are required to answer outstanding clinical questions.
      • Quality assurance of these clinical trials ensures the safety of the treatment and minimises the variation in treatment.
      • Review of the quality assurance process in clinical trials.
      • Updated data for the differences in calculated and measured data for different TPS algorithms in lung.


      Stereotactic Body Radiotherapy (SBRT) in the lung is a challenging technique which requires high quality clinical trials to answer the un-resolved clinical questions. Quality assurance of these clinical trials not only ensures the safety of the treatment of the participating patients but also minimises the variation in treatment, thus allowing the lowest number of patient treatments to answer the trial question. This review addresses the role of dosimetry audits in the quality assurance process and considers what can be done to ensure the highest accuracy of dose calculation and delivery and it’s assessment in multi-centre trials.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Aznar M.
        • Méndez Romero A.
        • Heijmen B.
        The role of technology in clinical trials using stereotactic body radiotherapy.
        Br J Radiol. 2017;
        • Ricardi U.
        • Badellino S.
        • Filippi A.
        What do radiation oncologists require for future advancements in lung SBRT?.
        Phys Med. 2016; 16: 1120-1797
        • Weber D.C.
        • Tomsej M.
        • Melidis C.
        • Hurkmans C.W.
        QA makes a clinical trial stronger: evidence-based medicine in radiation therapy.
        Radiother Oncol. 2012; 105: 4-8
      1. NRG-BR001: a Phase 1 study of Stereotactic Body Radiotherapy (SBRT) for the treatment of multiple metastases; n.d.

      2. NRG-BR002: a Phase IIR/III trial of standard of care therapy with or without Stereotactic Body Radiotherapy (SBRT) and/or surgical ablation for newly oligometastatic breast cancer.

      3. LungTech: Stereotactic Body Radiotherapy (SBRT) of inoperable centrally located NSCLC (LungTech).

        • Adebahr S.
        • Collette S.
        • Shash E.
        • Lambrecht M.
        • Le Pechoux C.
        • Faivre-Finn C.
        • et al.
        LungTech, an EORTC Phase II trial of stereotactic body radiotherapy for centrally located lung tumours: a clinical perspective.
        Br J Radiol. 2015; 88: 1051
        • Lambrecht M.
        • Melidis C.
        • Sonke J.
        • Adebahr S.
        • Boellaard R.
        • Verheij M.
        • et al.
        Lungtech, a phase II EORTC trial of SBRT for centrally located lung tumours – a clinical physics perspective.
        Radiat Oncol. 2016; 20: 7
      4. Stereotactic Ablative Radiotherapy for Oligometastatic Non-small Cell Lung Cancer (SARON); n.d.

      5. Conventional care Versus Radioablation (Stereotactic Body Radiotherapy) for Extracranial Oligometastases (CORE); n.d.

        • Siva S.
        • Kron T.
        • Bressel M.
        • Haas M.
        • Mai T.
        • Vinod S.
        • et al.
        A randomised phase II trial of Stereotactic Ablative Fractionated radiotherapy versus Radiosurgery for Oligometastatic Neoplasia to the lung (TROG 13.01 SAFRON II).
        BMC Cancer. 2016; 16: 183
        • Daisuke K.
        • Ozawa S.
        • Kimura T.
        • Saito A.
        • Yuji N.
        • Nishio T.
        • et al.
        Marginal prescription equivalent to the isocenter prescription in lung stereotactic body radiotherapy: preliminary study for Japan Clinical Oncology Group trial (JCOG1408).
        J Radiat Res. 2017; 58: 149-154
        • Swaminath A.
        • Wierzbicki M.
        • Parpia S.
        • Wright J.
        • Tsakiridis T.
        • Okawara G.
        • et al.
        Canadian phase III randomized trial of stereotactic body radiotherapy versus conventionally hypofractionated radiotherapy for stage I, medically inoperable non-small-cell lung cancer - rationale and protocol design for the Ontario Clinical Oncology Group.
        Clin Lung Cancer. 2016; 16
        • Swaminath A.
        • Wierzbicki M.
        • Wright J.
        • et al.
        Early results of a quality assurance program in a randomized trial of stereotactic body radiotherapy for stage I medically inoperable lung cancer.
        J Thorac Oncol. 2015; 10: 24
        • Nilsson P.
        • Ceberg C.
        • Kjellen E.
        • Gagliardi G.
        • Blomgren K.
        • Nilsson S.
        • et al.
        A template for writing radiotherapy protocols.
        Acta Oncol. 2015; 54: 275-279
        • Bolla M.
        • Bartelink H.
        • Garavaglia G.
        • Gonzalez D.
        • Horiot J.
        • Johansson K.
        • et al.
        EORTC guidelines for writing protocols for clinical trials of radiotherapy.
        Radiother Oncol. 1995; 36: 1-8
        • Hurkmans C.
        • Cuijpers J.
        • Lagerwaard F.
        • Widder J.
        • van der Heide U.
        • Schuring D.
        • et al.
        Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study.
        Radiat Oncol. 2009; 12: 1
        • Hurkmans C.
        • van Lieshout M.
        • Schuring D.
        • van Heumen M.
        • Cuijpers J.
        • Lagerwaard F.
        • et al.
        Quality assurance of 4D-CT scan techniques in multicenter phase III trial of surgery versus stereotactic radiotherapy (radiosurgery or surgery for operable early stage (stage 1A) non-small-cell lung cancer [ROSEL] study).
        Int J Radiat Oncol Biol Phys. 2011; 80: 918-927
        • Chirindel A.
        • Adebahr S.
        • Schuster D.
        • Schimek-Jasch T.
        • Schanne D.
        • Nemer U.
        • et al.
        Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.
        Radiother Oncol. 2015; 115: 335-341
        • Peulen H.
        • Belderbos J.
        • Guckenberger M.
        • Hope A.
        • Grills I.
        • van Herk M.
        • et al.
        Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy.
        Radiother Oncol. 2015; 114: 361-366
        • Lo A.
        • Liu M.
        • Chan E.
        • Lund C.
        • Truong P.
        • Loewen S.
        • et al.
        The impact of peer review of volume delineation in stereotactic body radiation therapy planning for primary lung cancer: a multicenter quality assurance study.
        J Thorac Oncol. 2014; 9: 527-533
        • Persson G.
        • Nygaard D.
        • Hollensen C.
        • Munck af Rosenschöld P.
        • Mouritsen L
        • Due A
        • et al.
        Interobserver delineation variation in lung tumour stereotactic body radiotherapy.
        Br J Radiol. 2012; 85: 654-660
        • Giglioli F.
        • Strigari L.
        • Ragona R.
        • Borzì G.
        • Cagni E.
        • Carbonini C.
        • et al.
        Lung stereotactic ablative body radiotherapy: a large scale multi-institutional planning comparison for interpreting results of multi-institutional studies.
        Phys Med. 2016; 32: 600-606
        • Melidis C.
        • Bosch W.R.
        • Izewska J.
        • Fidarova E.
        • Zubizarreta E.
        • Ulin K.
        • et al.
        Global harmonization of quality assurance naming conventions in radiation therapy clinical trials.
        Int J Radiat Oncol Biol Phys. 2014; 90: 1242-1249
      6. Palmer A, Nash D, Jafari S, Muscat S. Development of a novel “end to end” dosimetry audit of motion management in radiotherapy. In: ESTRO 37 Vienna; 2017.

        • Lye J.
        • Kenny J.
        • Lehmann J.
        • Dunn L.
        • Kron T.
        • Alves A.
        • et al.
        A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom.
        Med Phys. 2014; 41: 101712
        • Gershkevitsh E.
        • Pesznyak C.
        • Petrovic B.
        • Grezdo J.
        • Chelminski K.
        • do Carmo Lopes M.
        • et al.
        Dosimetric inter-institutional comparison in European radiotherapy centres: results of IAEA supported treatment planning system audit.
        Acta Oncol. 2014; 53: 628-636
        • Gershkevitsh E.
        • Schmidt R.
        • Velez G.
        • Miller D.
        • Korf E.
        • Yip F.
        • et al.
        Dosimetric verification of radiotherapy treatment planning systems: results of IAEA pilot study.
        Radiother Oncol. 2009; 89: 338-346
      7. Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case. Phys Med; n.d.

        • Kry S.
        • Alvarez P.
        • Molineu A.
        • Amador C.
        • Galvin J.
        • DS F.
        Algorithms used in heterogeneous dose calculations show systematic differences as measured with the Radiological Physics Center’s anthropomorphic thorax phantom used for RTOG credentialing.
        Int J Radiat Oncol Biol Phys. 2013; 85: 95-100
        • Distefano G.
        • Lee J.
        • Jafari S.
        • Gouldstone C.
        • Baker C.
        • Mayles H.
        • et al.
        A national dosimetry audit for stereotactic ablative radiotherapy in lung.
        Radiat Oncol. 2017;
        • Smilowitz J.
        • Das I.
        • Feygelman V.
        • Fraass B.
        • Kry S.
        • Marshall I.
        • et al.
        AAPM Medical Physics Practice Guideline 5a: commissioning and QA of treatment planning dose calculations – megavoltage photon and electron beams.
        J Appl Clin Med Phys. 2015; 16: 14-34
        • De Ruysscher D.
        • Faivre-Finn C.
        • Nestle U.
        • Hurkmans C.
        • Le Pechoux C.
        • Price A.
        • et al.
        European Organization for Research and Treatment of Cancer recommendations for planning and delivery of high-dose, high-precision radiotherapy for lung cancer.
        J Clin Oncol. 2010; 28: 5301-5310
        • Dunn L.
        • Lehmann J.
        • Lye J.
        • Kenny J.
        • Kron T.
        • Alves A.
        • et al.
        National dosimetric audit network finds discrepancies in AAA lung inhomogeneity corrections.
        Phys Med. 2015; 31: 435-441
        • Ong C.
        • Dahele M.
        • Slotman B.
        • Verbakel W.
        Dosimetric impact of the interplay effect during stereotactic lung radiation therapy delivery using flattening filter-free beams and volumetric modulated arc therapy.
        Int J Radiat Oncol Biol Phys. 2013; 86: 743-748
        • Melidis C.
        • Bosch W.R.
        • Izewska J.
        • Fidarova E.
        • Zubizarreta E.
        • Ishikura S.
        • et al.
        Radiation therapy quality assurance in clinical trials – Global harmonisation group.
        Radiother Oncol. 2014; : 1-3