Advertisement

Frontiers in planning optimization for lung SBRT

      Highlights

      • To describe the future challenges of lung SBRT planning.
      • To analyze the features to be accounted for performing the best planning solution.
      • To show the technological solutions for treating it in a safety way.

      Abstract

      Emerging data are showing the safety and the efficacy of Stereotactic Body Radiation therapy (SBRT) in lung cancer management. In this context, the very high doses delivered to the Planning Target Volume, make the planning phase essential for achieving high dose levels conformed to the shape of the target in order to have a good prognosis for tumor control and to avoid an overdose in relevant healthy adjacent tissue. In this non-systematic review we analyzed the technological and the physics aspects of SBRT planning for lung cancer. In particular, the aims of the study were: (i) to evaluate prescription strategies (homogeneous or inhomogeneous), (ii) to outline possible geometrical solutions by comparing the dosimetric results (iii) to describe the technological possibilities for a safe and effective treatment, (iv) to present the issues concerning radiobiological planning and the automation of the planning process.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Widder J.
        • Hollander M.
        • Ubbels J.F.
        • Bolt R.A.
        • Langendijk J.A.
        Optimizing dose prescription in stereotactic body radiotherapy for lung tumors using Monte Carlo dose calculation.
        Radiother Oncol. 2010; 94: 42-46
      1. International Commission on Radiation Units and Measurements. ICRU Report 62: Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50); 1999.

        • International Commission on Radiation Units and Measurements ICRU Report 83
        Prescribing, recording, and reporting photon-beam intensity modulated radiation therapy (IMRT).
        J ICRU. 2010; 10: 1-10
        • Benedict S.
        • Yenice K.
        • Followill D.
        • Galvin J.M.
        • Hinson W.
        • Kavanagh B.
        • et al.
        Stereotactic body radiation therapy: the report of AAPM Task Group 101.
        Med Phys. 2010; 37: 4078-4101
        • Giglioli F.R.
        • Strigari L.
        • Ragona R.
        • Borzì G.R.
        • Cagni E.
        • Carbonini C.
        • et al.
        Lung stereotactic ablative body radiotherapy: a large scale multi-institutional planning comparison for interpreting results of multi-institutional studies.
        Phys Med. 2016; 32: 600-606
        • Nagata Y.
        • Hiraoka M.
        • Shibata T.
        • Onishi H.
        • Kokubo M.
        • Karasawa K.
        • et al.
        Prospective trial of stereotactic body radiation therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: japan clinical oncology group study JCOG0403.
        Int J Radiat Oncol Biol Phys. 2015; 93: 989-996
        • Bral S.
        • Gevaert T.
        • Linthout N.
        • Versmessen H.
        • Collen C.
        • Engels B.
        • et al.
        Prospective, risk-adapted strategy of stereotactic body radiotherapy for early-stage non-small-cell lung cancer: results of a Phase II trial.
        Int J Radiat Oncol Biol Phys. 2011; 80: 1343-1349
        • Koto M.
        • Takai Y.
        • Ogawa Y.
        • Matsushita H.
        • Takeda K.
        • Takahashi C.
        • et al.
        A phase II study on stereotactic body radiotherapy for stage I non-small cell lung cancer.
        Radiother Oncol. 2007; 85: 429-434
        • Baumann P.
        • Nyman J.
        • Hoyer M.
        • Wennberg B.
        • Gagliardi G.
        • Lax I.
        • et al.
        Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy.
        J Clin Oncol. 2009; 27: 3290-3296
        • Lindberg K.
        • Nyman J.
        • Riesenfeld Källskog V.
        • Hoyer M.
        • Lund J.Å.
        • Lax I.
        • et al.
        Long-term results of a prospective phase II trial of medically inoperable stage I NSCLC treated with SBRT – the Nordic experience.
        Acta Oncol. 2015; 54: 1096-1104
        • Fakiris A.J.
        • McGarry R.C.
        • Yiannoutsos C.T.
        • Papiez L.
        • Williams M.
        • Henderson M.A.
        • et al.
        Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study.
        Int J Radiat Oncol Biol Phys. 2009; 75: 677-682
        • Ricardi U.
        • Filippi A.R.
        • Guarneri A.
        • Giglioli F.R.
        • Ciammella P.
        • Franco P.
        • et al.
        Stereotactic body radiation therapy for early stage non-small cell lung cancer: results of a prospective trial.
        Lung Cancer. 2010; 68: 72-77
        • Timmerman R.
        • Paulus R.
        • Galvin J.
        • Michalski J.
        • Straube W.
        • Bradley J.
        • et al.
        Stereotactic body radiation therapy for inoperable early stage lung cancer.
        J Am Med Assoc. 2010; 303: 1070-1076
        • Bezjak A.
        • Paulus R.
        • Gaspar L.E.
        • Timmerman R.D.
        • Straube W.L.
        • Ryan W.F.
        • et al.
        Efficacy and toxicity analysis of NRG oncology/RTOG 0813 trial of stereotactic body radiation therapy (SBRT) for centrally located non-small cell lung cancer (NSCLC).
        Int J Radiat Oncol Biol Phys. 2015; 90: S30
      2. EORTC 22113 – LungTechTrial, Available at: <https://clinicaltrials.gov> Identifier: NCT01795521.

      3. UK SABR Consortium Stereotactic ablative body radiotherapy (SABR): a resource. Version 5.0, January 2015. Available at: <http://www.actionradiotherapy.org/wp-content/uploads/2014/05/UKSABR Consortium Guidellinesv 41.pdf>; 2015.

        • Nagata Y.
        • Hiraoka M.
        • Shibata T.
        • Onishi H.
        • Kokubo M.
        • Karasawa M.
        • et al.
        Prospective trial of stereotactic body radiation therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: Japan clinical oncology group study JCOG0403.
        Int J Radiat Oncol Biol Phys. 2015; 93: 989-996
        • Takeda A.
        • Oku Y.
        • Sanuki N.
        • Eriguchi T.
        • Aoki Y.
        • Enomoto T.
        Feasibility study of stereotactic body radiotherapy for peripheral lung tumors with a maximum dose of 100 Gy in five fractions and a heterogeneous dose distribution in the planning target volume.
        J Radiat Res. 2014; : rru037
        • Wakai N.
        • Sumida I.
        • Otani Y.
        • Suzuki O.
        • Seo Y.
        • Isohashi F.
        • et al.
        Optimization of leaf margins for lung stereotactic body radiotherapy using a flattening filter-free beam.
        Med Phys. 2015; 42: 2125-2131
        • Ohtakara K.
        • Hoshi H.
        Comparison of pencil beam–based homogeneous vs inhomogeneous target dose planning for stereotactic body radiotherapy of peripheral lung tumors through Monte Carlo-based recalculation.
        Med Dos. 2015; 40: 248-255
        • Oku Y.
        • Takeda A.
        • Kunieda E.
        • Sudo Y.
        • Oooka Y.
        • Aoki Y.
        • et al.
        Analysis of suitable prescribed isodose line fitting to planning target volume in stereotactic body radiotherapy using dynamic conformal multiple arc therapy.
        Pract Radiat Oncol. 2012; 2: 46-53
        • Guckenberger M.
        • Wilbert J.
        • Krieger T.
        • Richter A.
        • Baier K.
        • Meyer J.
        • et al.
        Four-dimensional treatment planning for stereotactic body radiotherapy.
        Int J Radiat Oncol Biol Phys. 2007; 69: 276-285
        • Ding C.
        • Solberg T.D.
        • Hrycushko B.
        • Xing L.
        • Heinzerling J.
        • Timmerman R.
        • et al.
        Optimization of normalized prescription isodose selection for stereotactic body radiation therapy: conventional vs robotic linac.
        Med Phys. 2013; 40: 051705
        • Marino C.
        • Villaggi E.
        • Maggi G.
        • Esposito M.
        • Strigari L.
        • Bonanno E.
        • et al.
        A Feasibility dosimetric study on prostate cancer: are we ready for a multicenter clinical trial on SBRT?.
        Strahlenther Onkol. 2015; 191: 573-581
        • Esposito M.
        • Maggi G.
        • Marino C.
        • Bottalico L.
        • Cagni E.
        • Carbonini C.
        • et al.
        Multicentre treatment planning inter-comparison in a national context: the liver stereotactic ablative radiotherapy case.
        Phys Med. 2016; 32: 277-283
        • Zhang G.G.
        • Ku L.
        • Dilling T.J.
        • Stevens C.W.
        • Zhang R.R.
        • Li W.
        • et al.
        Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique.
        Radiat Oncol. 2011; 9: 152
        • Ong C.L.
        • Verbakel W.F.
        • Cuijpers J.P.
        • Slotman B.J.
        • Lagerwaard F.J.
        • Senan S.
        Stereotactic radiotherapy for peripheral lung tumors: a comparison of volumetric modulated arc therapy with 3 other delivery techniques.
        Radiother Oncol. 2010; 97: 437-442
        • Ding C.
        • Chang C.H.
        • Haslam J.
        • Timmerman R.
        • Solberg T.
        A dosimetric comparison of stereotactic body radiation therapy techniques for lung cancer: robotic versus conventional linac-based systems.
        J Appl Clin Med Phys. 2010; 11: 3223
        • Chan M.K.
        • Kwong D.L.
        • Law G.M.
        • Tam E.
        • Tong A.
        • Lee V.
        • et al.
        Dosimetric evaluation of four-dimensional dose distributions of CyberKnife and volumetric-modulated arc radiotherapy in stereotactic body lung radiotherapy.
        J Appl Clin Med Phys. 2013; 14: 4229
        • Weyh A.
        • Konski A.
        • Nalichowski A.
        • Maier J.
        • Lack D.
        Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMRT.
        J Appl Clin Med Phys. 2013; 14: 4065
        • Merna C.
        • Rwigema J.C.
        • Cao M.
        • Wang P.C.
        • Kishan A.U.
        • Michailian A.
        • et al.
        A treatment planning comparison between modulated tri-cobalt-60 teletherapy and linear accelerator-based stereotactic body radiotherapy for central early-stage non-small cell lung cancer.
        Med Dosim. 2016; 41: 87-91
        • Ewing M.M.
        • Desrosiers C.
        • Fakiris A.J.
        • DeBliek C.R.
        • Kiszka D.N.
        • Stinson E.R.
        • et al.
        Conformality study for stereotactic radiosurgery of the lung.
        Med Dosim. 2011; 36: 14-20
        • Palma D.A.
        • Senan S.
        • Haasbeek C.J.
        • Verbakel W.F.
        • Vincent A.
        • Lagerwaard F.
        Radiological and clinical pneumonitis after stereotactic lung radiotherapy: a matched analysis of three-dimensional conformal and volumetric-modulated arc therapy techniques.
        Int J Radiat Oncol Biol Phys. 2011; 80: 506-513
        • Hoppe B.S.
        • Laser B.
        • Kowalski A.V.
        • Fontenla S.C.
        • Pena-Greenberg E.
        • Yorke E.D.
        • et al.
        Acute Skin toxicity following stereotactic body radiation therapy for stage I non-small-cell lung cancer: who’s at risk?.
        Int J Radiat Oncol Biol Phys. 2008; 72: 1283-1286
        • McGrath S.D.
        • Matuszak M.M.
        • Yan D.
        • Kestin L.L.
        • Martinez A.A.
        • Grills I.S.
        Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: a dosimetric and treatment efficiency analysis.
        Radiother Oncol. 2010; 95: 153-157
        • Brock J.
        • Bedford J.
        • Partridge M.
        • McDonald F.
        • Ashley S.
        • McNair H.A.
        • et al.
        Optimising stereotactic body radiotherapy for non-small cell lung cancer with volumetric intensity-modulated arc therapy a planning study.
        Clin Oncol. 2012; 24: 68-75
        • Merrow C.E.
        • Wang I.Z.
        • Podgorsak M.B.
        A dosimetric evaluation of VMAT for the treatment of non-small cell lung cancer.
        J Appl Clin Med Phys. 2013; 14: 228-238
        • Holt A.
        • van Vliet-Vroegindeweij C.
        • Mans A.
        • Belderbos J.S.
        • Damen E.
        Volumetric modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques.
        Int J Radiat Oncol Biol Phys. 2011; 81: 1560-1567
        • Fitzgerald R.
        • Owen R.
        • Barry T.
        • Hargrave C.
        • Pryor D.
        • Bernard A.
        • et al.
        The effect of beam arrangements and the impact of non-coplanar beams on the treatment planning of stereotactic ablative radiation therapy for early stage lung cancer.
        J Med Radiat Sci. 2016; 63: 31-40
        • Dong P.
        • Lee P.
        • Ruan D.
        • Long T.
        • Romeijn E.
        • Low D.A.
        • et al.
        4π Noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors.
        Int J Radiat Oncol Biol Phys. 2013; 86: 407-413
        • Nguyen D.
        • Dong P.
        • Long T.
        • Ruan D.
        • Low D.A.
        • Romeijn E.
        • et al.
        Integral dose investigation of noncoplanar treatment beam geometries in radiotherapy.
        Med Phys. 2014; 41: 011905
        • Verbakel W.F.
        • Senan S.
        • Cuijpers J.P.
        • Slotman B.J.
        • Lagerwaard F.J.
        Rapid delivery of stereotactic radiotherapy for peripheral lung tumors using volumetric intensity modulated arcs.
        Radiot Oncol. 2009; 93: 122-124
        • Ishii K.
        • Okada W.
        • Ogino R.
        • Kubo K.
        • Kishimoto S.
        • Nakahara R.
        • et al.
        A treatment-planning comparison of three beam arrangement strategies for stereotactic body radiation therapy for centrally located lung tumors using volumetric-modulated arc therapy.
        J Radiat Res. 2016; 57: 273-279
        • Rosenberg M.W.
        • Kato C.M.
        • Carson K.M.P.
        • Matsunaga N.M.
        • Arao R.F.
        • Doss E.J.
        • et al.
        Circumferential or sectored beam arrangements for stereotactic body radiation therapy (SBRT) of primary lung tumors: effect on target and normal structure dose-volume metrics.
        Med Dosim. 2013; 8: 407-412
        • Liu H.
        • Ye J.
        • Kim J.J.
        • Deng J.
        • Kaur M.S.
        • Chen Z.J.
        Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer.
        Med Dosim. 2015; 40: 76-81
        • Ruggieri R.
        • Stavrev P.
        • Naccarato S.
        • Stavreva N.
        • Alongi F.
        • Nahum A.E.
        Optimal dose and fraction number in SBRT of lung tumours: a radiobiological analysis.
        Phys Med. 2017; 44: 188-195https://doi.org/10.1016/j.ejmp.2016.12.012
        • Semenenko V.A.
        • Reitz B.
        • Day E.
        • Qi X.S.
        • Miften M.
        • Li X.A.
        Evaluation of a commercial biologically based IMRT treatment planning system.
        Med Phys. 2008; 35: 5851-5860
        • Qi X.S.
        • Semenenko V.A.
        • Li X.A.
        Improved critical structure sparing with biologically based IMRT optimization.
        Med Phys. 2009; 36: 1790-1799
        • Allen Li X.
        • Alber M.
        • Deasy J.O.
        • Jackson A.
        • Ken Jee K.W.
        • Marks L.B.
        • et al.
        The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM.
        Med Phys. 2012; 39: 1386-1409
        • Hoffmann A.L.
        • den Hertog D.
        • Siem A.Y.
        • Kaanders J.H.
        • Huizenga H.
        Convex reformulation of biologically-based multi-criteria intensity-modulated radiation therapy optimization including fractionation effects.
        Phys Med Biol. 2008; 53: 6345-6362
        • Diot Q.
        • Kavanagh B.
        • Timmerman R.
        • Miften M.
        Biological-based optimization and volumetric modulated arc therapy delivery for stereotactic body radiation therapy.
        Med Phys. 2012; 39: 237-245
        • Chapet O.
        • Thomas E.
        • Kessler M.L.
        • Fraass B.A.
        • Ten Haken R.K.
        Esophagus sparing with IMRT in lung tumor irradiation: an EUD-based optimization technique.
        Int J Radiat Oncol Biol Phys. 2005; 63: 179-187
        • Sauer O.A.
        • Shepard D.M.
        • Mackie T.R.
        Application of constrained optimization to radiotherapy planning.
        Med Phys. 1999; 26: 2359-2366
        • Alber M.
        Normal tissue dose-effect models in biological dose optimisation.
        Z Med Phys. 2008; 18: 102-110
        • Fogliata A.
        • Belosi F.
        • Clivio A.
        • Navarria P.
        • Nicolini G.
        • Scorsetti M.
        • et al.
        On the pre-clinical validation of a commercial model-based optimisation engine: application to volumetric modulated arc therapy for patients with lung or prostate cancer.
        Radiother Oncol. 2014; 113: 385-391
        • Bokrantz R.
        Multicriteria optimization for volumetric-modulated arc therapy by decomposition into afluence-based relaxation and a segment weight-based restriction.
        Med Phys. 2012; 39: 6712-6725
        • Ghandour S.
        • Cosinschi A.
        • Mazouni Z.
        • Pachoud M.
        • Matzinger O.
        Optimization of stereotactic body radiotherapy treatment planning using a multicriteria optimization algorithm.
        Z Med Phys. 2016; ([pii: S0939-3889(16)30004-6])
        • Goddeeris B.
        • Vanderstraeten B.
        • Vandecasteele K.
        • Van Eijkeren M.
        • Derie C.
        • De Wagter C.
        Automated planning for lung SBRT: faster optimization without compromise on plan quality.
        Radiot Oncol. 2015; 115: S593-S594
        • Ghandour S.
        • Matzinger O.
        • Pachoud M.
        Volumetric-modulated arc therapy planning using multicriteria optimization for localized prostate cancer.
        J Appl Clin Med Phys. 2015; 16: 5410
        • Craft D.
        Multi-criteria optimization methods in radiation therapy planning: a review of technologies and directions.
        in: Operations research in healthcare. Springer-Verlag, Berlin2015
        • Cotrutz C.
        • Xing L.
        IMRT dose shaping with regionally variable penalty scheme.
        Med Phys. 2003; 30: 544-551
        • Appenzoller L.M.
        • Michalski J.M.
        • Thorstad W.L.
        • Mutic S.
        • Moore K.L.
        Predicting dose-volume histograms for organs-at-risk in IMRT planning.
        Med Phys. 2012; 39: 7446-7461
        • Tol J.P.
        • Dahele M.
        • Delaney A.R.
        • Slotman B.J.
        • Verbakel W.F.
        Can knowledge-based DVH predictions be used for automated, in dividualized quality assurance of radiotherapy treatment plans?.
        Radiat Oncol. 2015; 10: 234
        • Breedveld S.
        • Storchi P.R.
        • Voet P.W.
        • Heijmen B.J.
        ICycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans.
        Med Phys. 2012; 39: 951-963
      4. Aspradakis MM, Byene JP, Palmans H, Conway J, Rosser K, Warrington AP et al. Small field MV photon dosimetry. IPEM Report 103. York, UK; 2010.

        • Làrraga-Gutiérrez J.M.
        • Ballesteros-Zebad P.
        • Rodriguez-Ponce M.
        • Garcia-Garduno O.A.
        • Galvan de la Cruz O.O.
        Properties of a commercial PTW-60019 synthetic diamond detector for the dosimetry of small radiotherapy beams.
        Phys Med Biol. 2015; 60: 905-924
        • Russo S.
        • Reggiori G.
        • Cagni E.
        • Clemente S.
        • Esposito M.
        • Falco M.D.
        • et al.
        Small field output factors evaluation with a microDiamond detector over 30 Italian centers.
        Phys Med. 2016; 32: 1644-1650
        • Masi L.
        • Russo S.
        • Francescon P.
        • Doro R.
        • Frassanito M.C.
        • Fumagalli M.L.
        • et al.
        CyberKnife beam output factor measurements: a multi-site and multi-detector study.
        Phys Med. 2016; 32: 1637-1643
        • Gagnon J.C.
        • Thériault D.
        • Guillot M.
        • Archambault L.
        • Beddar S.
        • Gingras L.
        • et al.
        Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance.
        Med Phys. 2012; 39: 429-436
        • Underwood T.S.
        • Thompson J.
        • Bird L.
        • Scott A.J.
        • Patmore P.
        • Winter H.C.
        • et al.
        Validation of a prototype DiodeAir for small field dosimetry.
        Phys Med Biol. 2015; 60: 2939-2953
        • Alfonso R.
        • Andreo P.
        • Capote R.
        • Saiful Huq M.
        • Kilby W.
        • Kjäll P.
        • et al.
        A new formalism for reference dosimetry of small and nonstandard fields.
        Med Phys. 2008; 35: 5179-5186
        • Azangwe G.
        • Grochowska P.
        • Georg D.
        • Izewska J.
        • Hopfgartner J.
        • Lechner W.
        • et al.
        Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams.
        Med Phys. 2014; 41: 072103-72116
        • O'Brien D.J.
        • León-Vintró L.
        • McClean B.
        Small field detector correction factors kQclin, Qmsrfclin, fmsr for silicon-diode and diamond detectors with circular 6 MV fields derived using both empirical and numerical methods.
        Med Phys. 2016; 43: 411-423
        • Francescon P.
        • Beddar S.
        • Satariano N.
        • Das I.J.
        Variation of kQclin, Qmsr (fclin, fmsr) for the small-field dosimetric parameters percentage depth dose, tissue-maximum ratio, and off-axis ratio.
        Med Phys. 2014; 41: 101708
        • Liu P.Z.
        • Suchowerska N.
        • McKenzie D.R.
        Can small field diode correction factors be applied universally?.
        Radiother Oncol. 2014; 112: 442-446
        • Francescon P.
        • Kilby W.
        • Noll J.M.
        • Masi L.
        • Satariano N.
        • Russo S.
        Monte Carlo simulated corrections for beam commissioning measurements with circular and MLC shaped fields on the CyberKnife M6 System: a study including diode, microchamber, point scintillator, and synthetic microdiamond detectors.
        Phys Med Biol. 2017; 62: 1076-1095
        • Nelms B.E.
        • Ehler E.
        • Bragg H.
        • Tomè W.A.
        Quality assurance device for four-dimensional IMRT or SBRT and respiratory gating using patient-specific intrafraction motion kernels.
        J Appl Clin Med Phys. 2007; 8: 152
        • Foster R.D.
        • Speiser M.P.
        • Solberg T.D.
        Commissioning and verification of the collapsed cone convolution superposition algorithm for SBRT delivery using flattening filter-free beams.
        J Appl Clin Med Phys. 2014; 15: 39
        • Tyagi N.
        • Yang K.
        • Yan D.
        Comparing measurement-derived (3DVH) and machine log file-derived dose reconstruction methods for VMAT QA in patient geometries.
        J Appl Clin Med Phys. 2014; 15: 4645
        • Kim J.I.
        • Park S.Y.
        • Kim H.J.
        • Kim J.H.
        • Ye S.J.
        • Park J.M.
        The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT.
        Radiat Oncol. 2014; 28: 167
        • Dechambre D.
        • Baart V.
        • Cucchiaro S.
        • Ernst C.
        • Jansen 2.
        • Berkovic P.
        • et al.
        Commissioning Monte Carlo algorithm for robotic radiosurgery using cylindrical 3D-array with variable density inserts.
        Physica Med. 2017; 33: 152-158
        • Burghelea M.
        • Verellen D.
        • Dhont J.
        • Hung C.
        • Gevaert T.
        • Van den Begin
        • et al.
        Treating patients with Dynamic Wave Arc: First clinical experience.
        Radiother Oncol. 2017; ([pii: S0167-8140(17)30011-7])
        • Blanck O.
        • Masi L.
        • Chan M.K.
        • Adamczyk S.
        • Albrecht C.
        • Damme M.-C.
        • et al.
        High resolution ion chamber array delivery quality assurance for robotic radiosurgery: commissioning and validation.
        Phys Med. 2016; 32: 838-846
        • Ezzell G.A.
        • Burmeister J.W.
        • Dogan N.
        • LoSasso T.J.
        • Mechalakos J.G.
        • Mihailidis D.
        • et al.
        IMRT commissioning: Multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119.
        Med Phys. 2009; 36: 5359-5373
        • Vieillevigne L.
        • Molinier J.
        • Brun T.
        • Ferrand R.
        Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors.
        Phys Med. 2015; 31: 720-725
        • Rajasekaran D.
        • Jeevanandam P.
        • Sukumar P.
        • Ranganathan A.
        • Johnjothi S.
        • Nagarajan V.
        A study on the correlation between plan complexity and gamma index analysis in patient specific quality assurance of volumetric modulated arc therapy.
        Rep Pract Oncol Radiother. 2015; 20: 57-65
        • Nithiyanantham K.
        • Kadirampatti Mani G.
        • Subramani V.
        • Karukkupalayam Palaniappan K.
        • Uthiran M.
        • Vellengiri S.
        • et al.
        Influence of segment width on plan quality for volumetric modulated arc based stereotactic body radiotherapy.
        Rep Pract Oncol Radiother. 2014; 19: 287-295
        • Vikraman S.
        • Manigandan D.
        • Karrthick K.P.
        • Sambasivaselli R.
        • Senniandavar V.
        • Ramu M.
        • et al.
        Quantitative evaluation of 3D dosimetry for stereotactic volumetric-modulated arc delivery using COMPASS.
        J Appl Clin Med Phys. 2014; 16: 5128
        • Nelms B.E.
        • Opp D.
        • Robinson J.
        • Wolf T.K.
        • Zhang G.
        • Moros E.
        • et al.
        VMAT QA: measurement-guided 4D dose reconstruction on a patient.
        Med Phys. 2012; 39: 4228-4238
        • Li Y.
        • Niemela P.
        • Liao L.
        • Jiang S.
        • Li H.
        Selective robust optimization: a new intensity-modulated proton therapy optimization strategy.
        Med Phys. 2015; 42: 4840-4847
        • Mancosu P.
        • Clemente S.
        • Landoni V.
        • Ruggieri R.
        • Alongi F.
        • Scorsetti M.
        • et al.
        SBRT for prostate cancer: challenges and features from a physicist prospective.
        Phys Med. 2016; 32: 479-484