Advertisement

In vivo dosimetry for lung radiotherapy including SBRT

  • Boyd M.C. McCurdy
    Correspondence
    Corresponding author at: Division of Medical Physics, CancerCare Manitoba, Winnipeg R3E 0V9, Canada.
    Affiliations
    Division of Medical Physics, CancerCare Manitoba, Winnipeg R3E 0V9, Canada

    Department of Physics and Astronomy, University of Manitoba, Winnipeg R3M 2N2, Canada

    Department of Radiology, University of Manitoba, Winnipeg R3M 2N2, Canada
    Search for articles by this author
  • Peter M. McCowan
    Affiliations
    Division of Medical Physics, CancerCare Manitoba, Winnipeg R3E 0V9, Canada
    Search for articles by this author

      Highlights

      • In vivo dosimetry for lung radiotherapy including SBRT is reviewed.
      • Clinical use (to date) of 3D patient dose estimation methods has been restricted to a small number of academic institutes.
      • Technical challenges that limit the accuracy of these methods are highlighted.
      • Limited data (to date) have been published on in vivo dosimetric methods applied to clinical lung SBRT.
      • This clinical data reveal that delivered dosimetry differs noticeably from the planned dosimetry in up to ∼35% of fractions.

      Abstract

      SBRT for lung cancer is being rapidly adopted as a treatment option in modern radiotherapy centres. This treatment is one of the most complex in common clinical use, requiring significant expertise and resources. It delivers a high dose per fraction (typically ∼6–30 Gy/fraction) over few fractions. The complexity and high dose delivered in only a few fractions make powerful arguments for the application of in vivo dosimetry methods for these treatments to enhance patient safety. In vivo dosimetry is a group of techniques with a common objective – to estimate the dose delivered to the patient through a direct measurement of the treatment beam(s). In particular, methods employing an electronic portal imaging device have been intensely investigated over the past two decades. Treatment verification using in vivo dosimetry approaches has been shown to identify errors that would have been missed with other common quality assurance methods. With the addition of in vivo dosimetry to verify treatments, medical physicists and clinicians have a higher degree of confidence that the dose has been delivered to the patient as intended.
      In this review, the technical aspects and challenges of in vivo dosimetry for lung SBRT will be presented, focusing on transit dosimetry applications using electronic portal imaging devices (EPIDs). Currently available solutions will be discussed and published clinical experiences, which are very limited to date, will be highlighted.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Radiotherapy Risk Profile Technical Manual, World Health Organization, WHO/IER/PSP/2008.12 Geneva (Switzerland); 2008.

      2. Development of procedures for in vivo dosimetry in radiotherapy. IAEA Human Health Report No. 8. International Atomic Energy Agency, IAEA, Vienna (Austria); 2013.

        • Hartford A.C.
        • Palisca M.G.
        • Eichler T.J.
        • et al.
        American society for therapeutic radiology and oncology (ASTRO) and american college of radiology (ACR) practice guidelines for intensity-modulated radiation therapy (IMRT).
        Int J Radiat Oncol Biol Phys. 2009; 73: 9-14
        • Derreumaux S.
        • Etard C.
        • Huet C.
        • Trompier F.
        • Clairand I.
        • Bottollier-Depois J.
        • et al.
        Lessons from recent accidents in radiation therapy in France.
        Radiat Prot Dosim. 2008; 131: 130-135
        • The Royal College of Radiologists, Society and College of Radiographers, Institute of Physics and Engineering in Medicine, British Institute of Radiology
        Implementing In Vivo Dosimetry.
        Royal College of Radiologists, London2008
        • SSI (The Swedish Radiation Protection Institute)
        Regulations on radiation therapy Report SSI FS 4 (Stockholm.
        SSI), Sweden2000
        • Mijnheer B.
        • Beddar S.
        • Izewska J.
        • Reft C.
        In vivo dosimetry in external beam radiotherapy.
        Med Phys. 2013; 40 (070903-1-20)
        • Ford E.C.
        • Terezakis S.
        • Souranis A.
        • et al.
        Quality control quantification (QCQ): A tool to measure the value of quality control checks in radiation oncology.
        Int J Radiat Oncol Biol Phys. 2012; 84: e263-e269
        • Kron T.
        • Lehmann J.
        • Greer P.B.
        Dosimetry of ionising radiation in modern radiation oncology.
        Phys Med Biol. 2016; 61: R167-R205
        • van Elmpt W.J.
        • Nijsten S.M.
        • Schiffeleers R.F.
        • Dekker A.L.
        • Mijnheer B.J.
        • Lambin P.
        • et al.
        A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images.
        Med Phys. 2006; 33: 2426-2434
        • van Elmpt W.J.
        • Nijsten S.M.
        • Dekker A.L.
        • Mijnheer B.J.
        • Lambin P.
        Treatment verification in the presence of inhomogeneities using EPID-based three-dimensional dose reconstruction.
        Med Phys. 2007; 34: 2816-2826
        • Fippel M.
        Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm.
        Med Phys. 1999; 26: 1466-1475
        • van Elmpt W.
        • Petit S.
        • De Ruysscher D.
        • Lambin P.
        • Dekker A.
        3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer.
        Radiother Oncol. 2010; 94: 188-194
        • Persoon L.C.G.G.
        • Egelmeer A.G.T.M.
        • Ollers M.C.
        • et al.
        First clinical results of adaptive radiotherapy based on 3D portal dosimetry for lung cancer patients with atelectasis treated with volumetric-modulated arc therapy (VMAT).
        Acta Oncol. 2013; 52: 1484-1489
        • Berbeco R.I.
        • Hacker F.
        • Zatwarnicki C.
        • Park S.J.
        • Ionascu D.
        • O’Farrell D.
        • et al.
        A novel method for estimating SBRT delivered dose with beam’s-eye-view images.
        Med Phys. 2008; 35: 3225-3231
        • Aristophanous M.
        • Rottmann J.
        • Court L.E.
        • Berbeco R.I.
        EPID-guided 3D dose verification of lung SBRT.
        Med Phys. 2011; 38: 495-503
        • Cai W.
        • Hurwitz M.H.
        • Williams C.L.
        • Dhou S.
        • Berbeco R.I.
        • Seco J.
        • et al.
        3D delivered dose assessment using a 4DCT-based motion model.
        Med Phys. 2015; 42: 2897-2907
        • Hurwitz M.
        • Williams C.L.
        • Mishra P.
        • Rottmann J.
        • Dhou S.
        • Wagar M.
        • et al.
        Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal.
        Phys Med Biol. 2015; 60: 521-535
        • Lin M.-H.
        • Li J.
        • Wang L.
        • Koren S.
        • Fan J.
        • Forkal E.
        • et al.
        4D patient dose reconstruction using online measured EPID cine images for lung SBRT treatment validation.
        Med Phys. 2012; 39: 5949-5958
        • Gimeno J.
        • Pujades M.C.
        • García T.
        • Carmona V.
        • Lliso F.
        • Palomo R.
        • et al.
        Commissioning and initial experience with a commercial software for in vivo volumetric dosimetry.
        Phys Med. 2014; 30: 954-959
        • Matrosic C.
        • Culberson W.
        • Rosen B.
        • Madsen E.
        • Frank G.
        • Bednarz B.
        Initial characterization of a gel patch dosimeter for in vivo dosimetry.
        Phys Med Biol. 2016; 61: N240-N248
        • McCurdy B.M.C.
        Dosimetry in radiotherapy using a-Si EPIDs:Systems, methods, and applications focusing on 3D patient dose estimation.
        J Phys: Conf Ser. 2013; 444012002
        • McCurdy B.M.C.
        • Greer P.
        • Bedford J.
        Electronic Portal Imaging Device (EPID) dosimetry. Clinical 3D dosimetry in radiation therapy.
        in: Mijnheer B. 1st ed. Taylor & Francis Books Inc, Abingden (England)2017
        • van Elmpt W.
        • McDermott L.
        • Nijsten S.
        • et al.
        A literature review of electronic portal imaging for radiotherapy dosimetry.
        Radiother Oncol. 2008; 88: 289-309
        • Kroonwijk M.
        • Pasma K.L.
        • Quint S.
        • Koper P.C.
        • Visser A.G.
        • Heijmen B.J.
        In vivo dosimetry for prostate cancer patients using an electronic portal imaging device (EPID); demonstration of internal organ motion.
        Radiother Oncol. 1998; 49: 125-132
        • van Elmpt W.J.C.
        • Nijsten S.M.J.J.G.
        • Mijnheer B.J.
        • Minken A.W.H.
        Experimental verification of a portal dose prediction model.
        Med Phys. 2005; 32: 2805-2818
        • Pasma K.L.
        • Heijmen B.J.M.
        • Kroonwijk M.
        • Visser A.G.
        Portal dose image (PDI) prediction for dosimetric treatment verification in radiotherapy I: An algorithm for open beams.
        Med Phys. 1998; 25: 830-840
        • Pasma K.L.
        • Kroonwijk M.
        • van Dieren E.B.
        • Visser A.G.
        • Heijmen B.J.M.
        Verification of compensator thicknesses using a fluoroscopic electronic portal imaging device.
        Med Phys. 1999; 26: 1524-1529
        • Persoon L.C.G.G.
        • Nijsten S.M.J.J.G.
        • Wilbrink F.J.
        • Podesta M.
        • Snaith J.A.D.
        • Lustberg T.
        • et al.
        Interfractional trend analysis of dose differences based on 2D transit portal dosimetry.
        Phys Med Biol. 2012; 57: 6445-6458
        • Persoon L.C.G.G.
        • Podesta M.
        • Hoffmann L.
        • Sanizadeh A.
        • Schyns L.E.J.R.
        • de Ruiter B.-M.
        • et al.
        Is integrated transit planar portal dosimetry able to detect geometric changes in lung cancer patients treated with volumetric modulated arc therapy?.
        Acta Oncol. 2015; 54: 1501-1507
      3. Persoon LCGG, Podesta M, Nijsten SMJJG, Troost EGC, Verhaegen F, Time-resolved versus integrated transit planar dosimetry for volumetric modulated arc therapy: patient-specific dose differences during treatment, a proof of principle technology in cancer research & treatment, 2016; 15(6):NP79–NP87.

        • Schyns L.E.
        • Persoon L.C.
        • Podesta M.
        • van Elmpt W.J.
        • Verhaegen F.
        Time-resolved versus time-integrated portal dosimetry: the role of an object's position with respect to the isocenter in volumetric modulated arc therapy.
        Phys Med Biol. 2016; 61: 3969-3984
        • van Esch A.
        • Depuydt T.
        • Huyskens D.P.
        The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields.
        Radiother Oncol. 2004; 71: 223-234
        • Berry S.L.
        • Sheu R.-D.
        • Polvorosa C.S.
        • Wuu C.-S.
        Implementation of EPID transit dosimetry based on a through-air dosimetry algorithm.
        Med Phys. 2012; 39: 87-98
        • Berry S.L.
        • Polvorosa C.
        • Cheng S.
        • Deutsch I.
        • Chao K.S.C.
        • Wuu C.-S.
        Initial clinical experience performing patient treatment verification with an electronic portal imaging device transit dosimeter.
        Int J Radiation Oncol Biol Phys. 2014; 88: 204-209
        • Fuangrod T.
        • Woodruff H.C.
        • van Uytven E.
        • McCurdy B.M.
        • Kuncic Z.
        • O'Connor D.J.
        • et al.
        A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.
        Med Phys. 2013; 40: 091907
        • Woodruff H.C.
        • Fuangrod T.
        • Van Uytven E.
        • McCurdy B.M.
        • van Beek T.
        • Bhatia S.
        • et al.
        First experience with real-time EPID-based delivery verification during IMRT and VMAT sessions.
        Int J Radiat Oncol Biol Phys. 2015; 93: 516-522
        • Chytyk-Praznik K.
        • VanUytven E.
        • vanBeek T.A.
        • Greer P.B.
        • McCurdy B.M.
        Model-based prediction of portal dose images during patient treatment.
        Med Phys. 2013; 40: 031713
        • McCurdy B.M.
        • Pistorius S.
        A two-step algorithm for predicting portal dose images in arbitrary detectors.
        Med Phys. 2000; 27: 2109-2116
        • McCurdy B.M.
        • Luchka K.
        • Pistorius S.
        Dosimetric investigation and portal dose image prediction using an amorphous silicon electronic portal imaging device.
        Med Phys. 2001; 28: 911-924
        • Piermattei A.
        • Fidanzio A.
        • Stimato G.
        • Azario L.
        • Grimaldi L.
        • D'Onofrio G.
        • et al.
        In vivo dosimetry by an aSi-based EPID.
        Med Phys. 2006; 33: 4414-4422
        • Piermattei A.
        • Fidanzio A.
        • Azario L.
        • Grimaldi L.
        • D'Onofrio G.
        • Cilla S.
        • et al.
        Application of a practical method for the isocenter point in vivo dosimetry by a transit signal.
        Phys Med Biol. 2007; 52: 5101-5117
        • François P.
        • Boissard P.
        • Berger L.
        • Mazal A.
        In vivo dose verification from backprojection of a transit dose measurement on the central axis of photon beams.
        Phys Med. 2011; 27: 1-10
        • Nijsten S.M.J.J.G.
        • Mijnheer B.J.
        • Dekker A.L.A.J.
        • et al.
        Routine individualised patient dosimetry using electronic portal imaging devices.
        Radiother Oncol. 2007; 83: 65-75
        • Boellaard R.
        • van Herk M.
        • Uiterwaal H.
        • Mijnheer B.
        First clinical tests using a liquid-filled electronic portal imaging device and a convolution model for the verification of the midplane dose.
        Radiother Oncol. 1998; 47: 303-312
        • Boellaard R.
        • Essers M.
        • van Herk M.
        • Mijnheer B.J.
        New method to obtain the midplane dose using portal in vivo dosimetry.
        Int J Radiat Oncol Biol Phys. 1998; 41: 465-474
        • Boellaard R.
        • van Herk M.
        • Uiterwaal H.
        • Mijnheer B.
        Two-dimensional exit dosimetry using a liquid-filled electronic portal imaging device and a convolution model.
        Radiother Oncol. 1997; 44: 149-157
        • Boellaard R.
        • van Herk M.
        • Mijnheer B.J.
        A convolution model to convert transmission dose images to exit dose distributions.
        Med Phys. 1997; 24: 189-199
        • Wendling M.
        • Louwe R.J.
        • McDermott L.N.
        • Sonke J.J.
        • van Herk M.
        • Mijnheer B.J.
        Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method.
        Med Phys. 2006; 33: 259-273
        • McDermott L.N.
        • Wendling M.
        • Sonke J.J.
        • van Herk M.
        • Mijnheer B.J.
        Replacing pretreatment verification with in vivo EPID dosimetry for prostate IMRT.
        Int J Radiat Oncol Biol Phys. 2007; 67: 1568-1577
        • Wendling M.
        • McDermott L.N.
        • Mans A.
        • et al.
        In aqua vivo EPID dosimetry.
        Med Phys. 2012; 39: 367-377
        • Wendling M.
        • McDermott L.N.
        • Mans A.
        • et al.
        A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments.
        Med Phys. 2009; 36: 3310-3321
        • van Uytven E.
        • van Beek T.
        • McCowan P.M.
        • Chytyk-Praznik K.
        • Greer P.B.
        • McCurdy B.M.
        Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm.
        Med Phys. 2015; 42: 6945-6954
        • McNutt T.R.
        • Mackie T.R.
        • Reckwerdt P.
        • Paliwal B.R.
        Modeling dose distributions from portal dose images using the convolution/superposition method.
        Med Phys. 1996; 23: 1381-1392
        • Ahnesjö A.
        Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media.
        Med Phys. 1989; 16: 577-592
        • McCowan P.M.
        • van Uytven E.
        • van Beek T.
        • Asuni G.
        • McCurdy B.M.C.
        An in vivo dose verification method for SBRT–VMAT delivery using the EPID.
        Med Phys. 2015; 42: 6955-6963
        • Mans A.
        • Remeijer P.
        • Olaciregui-Ruiz I.
        • et al.
        3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry.
        Radiother Oncol. 2010; 94: 181-187
        • Celi S.
        • Costa E.
        • Wessels C.
        • Mazal A.
        • Fourquet A.
        • François P.
        EPID based in vivo dosimetry system: clinical experience and results.
        J App Clin Med Phys. 2016; 17: 262-276
        • Piermattei A.
        • Cilla S.
        • Grimaldi L.
        • Sabatino D.
        • Fidanzio A.
        • Greco F.
        • et al.
        Integration between in vivo dosimetry and image guided radiotherapy for lung tumors.
        Med Phys. 2009; 36: 2206-2214
        • Meluccio D.
        • Fidanzio A.
        • Azario L.
        • Ianiro A.
        • Macchia G.
        • Digesù C.
        • et al.
        Initial clinical experience with Epid-based in-vivo dosimetry for VMAT treatments of head-and-neck tumors.
        Phys Med. 2016; 32: 52-58
        • Fidanzio A.
        • Azario L.
        • Greco F.
        • Cilla S.
        • Piermattei A.
        Routine EPID in-vivo dosimetry in a reference point for conformal radiotherapy treatments.
        Phys Med Biol. 2015; 60: N141-N150
        • Mans A.
        • Wendling M.
        • McDermott L.N.
        • Sonke J.-J.
        • Tielenburg R.
        • Vijlbrief R.
        • et al.
        Catching errors with in vivo EPID dosimetry.
        Med Phys. 2010; 37: 2638-2644
        • Mijnheer B.J.
        • González P.
        • Olaciregui-Ruiz I.
        • Rozendaal R.A.
        • van Herk M.
        • Mans A.
        Overview of 3-year experience with large-scale electronic portal imaging device–based 3-dimensional transit dosimetry.
        Pract Radiat Oncol. 2015; 5: e679-e687
        • McCowan P.M.
        • Asuni G.
        • van Beek T.
        • van Uytven E.
        • McCurdy B.M.C.
        • Loewen S.K.
        • et al.
        Clinical implementation of a model-based in vivo dose verification system for stereotactic body radiation therapyevolumetric modulated arc therapy treatments using the electronic portal imaging device.
        Int J Radiat Oncol Biol Phys. 2017; 97: 1077-1084