Advertisement

IGRT and motion management during lung SBRT delivery

      Highlights

      • IGRT and motion management improves the delivery accuracy and normal tissues sparing during lung SBRT.
      • Better treatment accuracy could mitigate toxicities and increase the patient survival.
      • Numerous motion management technologies are available for lung SBRT.

      Abstract

      Patient motion can cause misalignment of the tumour and toxicities to the healthy lung tissue during lung stereotactic body radiation therapy (SBRT). Any deviations from the reference setup can miss the target and have acute toxic effects on the patient with consequences onto its quality of life and survival outcomes. Correction for motion, either immediately prior to treatment or intra-treatment, can be realized with image-guided radiation therapy (IGRT) and motion management devices. The use of these techniques has demonstrated the feasibility of integrating complex technology with clinical linear accelerator to provide a higher standard of care for the patients and increase their quality of life.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Timmerman R.
        • McGarry R.
        • Yiannoutsos C.
        • Papiez L.
        • Tudor K.
        • DeLuca J.
        • et al.
        Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer.
        J Clin Oncol. 2006; 24: 4833-4839
        • Baumann P.
        • Nyman J.
        • Hoyer M.
        • Wennberg B.
        • Gagliardi G.
        • Lax I.
        • et al.
        Outcome in a prospective phase II trial of medically inoperable stage I non–small-cell lung cancer patients treated with stereotactic body radiotherapy.
        J Clin Oncol. 2009; 27: 3290-3296
        • Stephans K.L.
        • Djemil T.
        • Tendulkar R.D.
        • Robinson C.G.
        • Reddy C.A.
        • Videtic G.M.
        Prediction of chest wall toxicity from lung stereotactic body radiotherapy (SBRT).
        Int J Radiat Oncol Biol Phys. 2012; 82: 974-980
        • Ong C.L.
        • Palma D.
        • Verbakel W.F.
        • Slotman B.J.
        • Senan S.
        Treatment of large stage I-II lung tumors using stereotactic body radiotherapy (SBRT): planning considerations and early toxicity.
        Radiother Oncol. 2010; 97: 431-436
        • Keall P.J.
        • Mageras G.S.
        • Balter J.M.
        • Emery R.S.
        • Forster K.M.
        • Jiang S.B.
        • et al.
        The management of respiratory motion in radiation oncology report of AAPM Task Group 76.
        Med Phys. 2006; 33: 3874-3900
        • Menten M.J.
        • Wetscherek A.
        • Fast M.F.
        MRI-guided lung SBRT: present and future developments.
        Physica Med. 2017;
        • Bujold A.
        • Craig T.
        • Jaffray D.
        • Dawson L.A.
        Image-guided radiotherapy: has it influenced patient outcomes? Seminars in radiation oncology.
        Elsevier, 2012: 50-61
        • Jaffray D.A.
        • Drake D.G.
        • Moreau M.
        • Martinez A.A.
        • Wong J.W.
        A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.
        Int J Radiat Oncol Biol Phys. 1999; 45: 773-789
        • Bissonnette J.-P.
        • Balter P.A.
        • Dong L.
        • Langen K.M.
        • Lovelock D.M.
        • Miften M.
        • et al.
        Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179.
        Med Phys. 2012; 39: 1946-1963
        • Purdie T.G.
        • Bissonnette J.-P.
        • Franks K.
        • Bezjak A.
        • Payne D.
        • Sie F.
        • et al.
        Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position.
        Int J Radiat Oncol Biol Phys. 2007; 68: 243-252
        • Schulze R.
        • Heil U.
        • Groβ D.
        • Bruellmann D.
        • Dranischnikow E.
        • Schwanecke U.
        • et al.
        Artefacts in CBCT: a review.
        Dentomaxillofacial Radiol. 2014;
        • Shah C.
        • Grills I.S.
        • Kestin L.L.
        • McGrath S.
        • Ye H.
        • Martin S.K.
        • et al.
        Intrafraction variation of mean tumor position during image-guided hypofractionated stereotactic body radiotherapy for lung cancer.
        Int J Radiat Oncol Biol Phys. 2012; 82: 1636-1641
        • Thengumpallil S.
        • Smith K.
        • Monnin P.
        • Bourhis J.
        • Bochud F.
        • Moeckli R.
        Difference in performance between 3D and 4D CBCT for lung imaging: a dose and image quality analysis.
        J Appl Clin Med Phys. 2016; 17
      1. Sonke J-J, Rossi M, Wolthaus J, van Herk M, Damen E, Belderbos J. Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys. 2009;74:567-74.

        • Sweeney R.A.
        • Seubert B.
        • Stark S.
        • Homann V.
        • Müller G.
        • Flentje M.
        • et al.
        Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors.
        Radiat Oncol. 2012; 7: 1
        • Taguchi K.
        Temporal resolution and the evaluation of candidate algorithms for four-dimensional CT.
        Med Phys. 2003; 30: 640-650
        • Sonke J.
        • Remeijer P.
        • Van Herk M.
        Respiration-correlated cone beam CT: obtaining a four-dimensional data set.
        Med Phys. 2003; 30: 1415
      2. OBrien R, Shieh C, Kipritidis J, Keall P. TH-E-17A-05: Optimizing Four Dimensional Cone Beam Computed Tomography Projection Allocation to Respiratory Bins. Med Phys. 2014;41:573.

        • Li T.
        • Xing L.
        Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy.
        Int J Radiat Oncol Biol Phys. 2007; 67: 1211-1219
        • Lu J.
        • Guerrero T.M.
        • Munro P.
        • Jeung A.
        • Chi P.-C.M.
        • Balter P.
        • et al.
        Four-dimensional cone beam CT with adaptive gantry rotation and adaptive data sampling.
        Med Phys. 2007; 34: 3520-3529
      3. T O’Brien R, Cooper BJ, Shieh C-C, Stankovic U, Keall PJ, Sonke J-J. The first implementation of respiratory triggered 4DCBCT on a linear accelerator. Phys Med Biol 2016;61:3488.

        • Bergner F.
        • Berkus T.
        • Oelhafen M.
        • Kunz P.
        • Pan T.
        • Grimmer R.
        • et al.
        An investigation of 4D cone-beam CT algorithms for slowly rotating scanners.
        Med Phys. 2010; 37: 5044-5053
        • Chen H.
        • Rottmann J.
        • Yip S.S.
        • Morf D.
        • Füglistaller R.
        • Star-Lack J.
        • et al.
        Super-resolution imaging in a multiple layer EPID.
        Biomed Phys Eng Express. 2017; 3: 025004
        • Star-Lack J.
        • Shedlock D.
        • Swahn D.
        • Humber D.
        • Wang A.
        • Hirsh H.
        • et al.
        A piecewise-focused high DQE detector for MV imaging.
        Med Phys. 2015; 42: 5084-5099
        • Wang Y.
        • Antonuk L.E.
        • Zhao Q.
        • El-Mohri Y.
        • Perna L.
        High-DQE EPIDs based on thick, segmented BGO and CsI: Tl scintillators: performance evaluation at extremely low dose.
        Med Phys. 2009; 36: 5707-5718
        • Kirvan P.
        • Monajemi T.
        • Fallone B.
        • Rathee S.
        Performance characterization of a MVCT scanner using multislice thick, segmented cadmium tungstate-photodiode detectors.
        Med Phys. 2010; 37: 249-257
        • Hardie R.C.
        • Barnard K.J.
        • Armstrong E.E.
        Joint MAP registration and high-resolution image estimation using a sequence of undersampled images.
        IEEE Trans Image Process. 1997; 6: 1621-1633
      4. Bannore V. Iterative-interpolation super-resolution image reconstruction: a computationally efficient technique: Springer Science & Business Media; 2009.

      5. Xia D, Paysan P, Zhang Z, Seghers D, Brehm M, Munro P, et al. Optimization-based Reconstruction from Megavoltage Cone-beam CT Data in Image Guided Radiation Therapy.

        • Shah A.P.
        • Langen K.M.
        • Ruchala K.J.
        • Cox A.
        • Kupelian P.A.
        • Meeks S.L.
        Patient dose from megavoltage computed tomography imaging.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1579-1587
        • Chang J.
        • Sillanpaa J.
        • Ling C.C.
        • Seppi E.
        • Yorke E.
        • Mageras G.
        • et al.
        Integrating respiratory gating into a megavoltage cone-beam CT system.
        Med Phys. 2006; 33: 2354-2361
        • Chang J.
        • Mageras G.S.
        • Yorke E.
        • De Arruda F.
        • Sillanpaa J.
        • Rosenzweig K.E.
        • et al.
        Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography.
        Int J Radiat Oncol Biol Phys. 2007; 67: 1548-1558
        • Blessing M.
        • Arns A.
        • Wertz H.
        • Stsepankou D.
        • Boda-Heggemann J.
        • Lohr F.
        • et al.
        Image guided radiation therapy using ultrafast kV-MV CBCT: End-to-End test results of the finalized implementation.
        Int J Radiat Oncol Biol Phys. 2014; 90: S828-S829
        • Arns A.
        • Blessing M.
        • Fleckenstein J.
        • Stsepankou D.
        • Boda-Heggemann J.
        • Simeonova-Chergou A.
        • et al.
        Towards clinical implementation of ultrafast combined kV-MV CBCT for IGRT of lung cancer.
        Strahlenther Onkol. 2016; 192: 312-321
        • Held M.
        • Cremers F.
        • Sneed P.K.
        • Braunstein S.
        • Fogh S.E.
        • Nakamura J.
        • et al.
        Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments.
        J Appl Clin Med Phys. 2016; 17
        • Kamino Y.
        • Takayama K.
        • Kokubo M.
        • Narita Y.
        • Hirai E.
        • Kawawda N.
        • et al.
        Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head.
        Int J Radiat Oncol Biol Phys. 2006; 66: 271-278
        • Kuo J.S.
        • Yu C.
        • Petrovich Z.
        • Apuzzo M.L.
        The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality.
        Neurosurgery. 2003; 53: 1235-1239
        • Shirato H.
        • Shimizu S.
        • Kitamura K.
        • Nishioka T.
        • Kagei K.
        • Hashimoto S.
        • et al.
        Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor.
        Int J Radiat Oncol Biol Phys. 2000; 48: 435-442
        • Depuydt T.
        • Verellen D.
        • Haas O.
        • Gevaert T.
        • Linthout N.
        • Duchateau M.
        • et al.
        Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.
        Radiother Oncol. 2011; 98: 365-372
        • Sothmann T.
        • Blanck O.
        • Poels K.
        • Werner R.
        • Gauer T.
        Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ-evaluation and dose-area-histograms.
        Phys Med Biol. 2016; 61: 1677
        • Shen Z.-T.
        • Wu X.-H.
        • Li B.
        • Zhu X.-X.
        Clinical outcomes of CyberKnife stereotactic body radiotherapy for peripheral stage I non-small cell lung cancer.
        Med Oncol. 2015; 32: 1-8
      6. Orecchia R, Surgo A, Muto M, Ferrari A, Piperno G, Gerardi M, et al. VERO® radiotherapy for low burden cancer: 789 patients with 957 lesions. ecancermedicalscience. 2016;10.

        • Wang Z.
        • Kong Q.-T.
        • Li J.
        • Wu X.-H.
        • Li B.
        • Shen Z.-T.
        • et al.
        Clinical outcomes of cyberknife stereotactic radiosurgery for lung metastases.
        J Thorac Dis. 2015; 7: 407
        • Brown W.T.
        • Wu X.
        • Fayad F.
        • Fowler J.F.
        • Amendola B.E.
        • García S.
        • et al.
        CyberKnife® radiosurgery for stage I lung cancer: results at 36 months.
        Clin Lung Cancer. 2007; 8: 488-492
        • Jung I.-H.
        • Song S.Y.
        • Jung J.
        • Cho B.
        • Kwak J.
        • Je H.U.
        • et al.
        Clinical outcome of fiducial-less CyberKnife radiosurgery for stage I non-small cell lung cancer.
        Radiat Oncol J. 2015; 33: 89
        • Keall P.J.
        • Colvill E.
        • O’Brien R.
        • Ng J.A.
        • Poulsen P.R.
        • Eade T.
        • et al.
        The first clinical implementation of electromagnetic transponder-guided MLC tracking.
        Med Phys. 2014; 41
        • Booth J.T.
        • Caillet V.
        • Hardcastle N.
        • O’Brien R.
        • Szymura K.
        • Crasta C.
        • et al.
        The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.
        Radiother Oncol. 2016; 121: 19-25
        • Davies G.
        • Poludniowski G.
        • Webb S.
        MLC tracking for Elekta VMAT: a modelling study.
        Phys Med Biol. 2011; 56: 7541
        • Fast M.F.
        • Nill S.
        • Bedford J.L.
        • Oelfke U.
        Dynamic tumor tracking using the Elekta Agility MLC.
        Med Phys. 2014; 41
        • Tacke M.B.
        • Nill S.
        • Krauss A.
        • Oelfke U.
        Real-time tumor tracking: automatic compensation of target motion using the Siemens 160 MLC.
        Med Phys. 2010; 37: 753-761
        • Krauss A.
        • Nill S.
        • Tacke M.
        • Oelfke U.
        Electromagnetic real-time tumor position monitoring and dynamic multileaf collimator tracking using a Siemens 160 MLC: geometric and dosimetric accuracy of an integrated system.
        Int J Radiat Oncol Biol Phys. 2011; 79: 579-587
        • D'Souza D.
        • Naqvi S.A.
        • Cedric X.Y.
        Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study.
        Phys Med Biol. 2005; 50: 4021
        • Hansen R.
        • Ravkilde T.
        • Worm E.S.
        • Toftegaard J.
        • Grau C.
        • Macek K.
        • et al.
        Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator.
        Med Phys. 2016; 43: 2387-2398
        • Lang S.
        • Zeimetz J.
        • Ochsner G.
        • Schmid Daners M.
        • Riesterer O.
        • Klöck S.
        Development and evaluation of a prototype tracking system using the treatment couch.
        Med Phys. 2014; 41
        • Toftegaard J.
        • Hansen R.
        • Ravkilde T.
        • Macek K.
        • Poulsen P.R.
        An experimentally validated couch and MLC tracking simulator used to investigate hybrid couch-MLC tracking.
        Med Phys. 2017;
        • Gibbs I.C.
        • Loo B.W.
        CyberKnife stereotactic ablative radiotherapy for lung tumors.
        Technol Cancer Res Treat. 2010; 9: 589-596
        • Soldà F.
        • Lodge M.
        • Ashley S.
        • Whitington A.
        • Goldstraw P.
        • Brada M.
        Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort.
        Radiother Oncol. 2013; 109: 1-7
        • Pepin E.W.
        • Wu H.
        • Zhang Y.
        • Lord B.
        Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system.
        Med Phys. 2011; 38: 4036-4044
        • Willoughby T.R.
        • Forbes A.R.
        • Buchholz D.
        • Langen K.M.
        • Wagner T.H.
        • Zeidan O.A.
        • et al.
        Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy.
        Int J Radiat Oncol Biol Phys. 2006; 66: 568-575
        • Wurm R.
        • Gum F.
        • Erbel S.
        • Schlenger L.
        • Scheffler D.
        • Agaoglu D.
        • et al.
        Image guided respiratory gated hypofractionated Stereotactic Body Radiation Therapy (H-SBRT) for liver and lung tumors: initial experience.
        Acta Oncol. 2006; 45: 881-889
        • Whyte R.I.
        • Crownover R.
        • Murphy M.J.
        • Martin D.P.
        • Rice T.W.
        • DeCamp M.M.
        • et al.
        Stereotactic radiosurgery for lung tumors: preliminary report of a phase I trial.
        Ann Thorac Surg. 2003; 75: 1097-1101
        • Nabavizadeh N.
        • Zhang J.
        • Elliott D.A.
        • Tanyi J.A.
        • Thomas Jr., C.R.
        • Fuss M.
        • et al.
        Electromagnetic navigational bronchoscopy-guided fiducial markers for lung stereotactic body radiation therapy: analysis of safety, feasibility, and interfraction stability.
        J Bronchol Interventional Pulmonol. 2014; 21: 123-130
        • Harley D.P.
        • Krimsky W.S.
        • Sarkar S.
        • Highfield D.
        • Aygun C.
        • Gurses B.
        Fiducial marker placement using endobronchial ultrasound and navigational bronchoscopy for stereotactic radiosurgery: an alternative strategy.
        Ann Thorac Surg. 2010; 89: 368-374
        • Hong J.C.
        • Eclov N.C.
        • Yu Y.
        • Rao A.K.
        • Dieterich S.
        • Le Q.-T.
        • et al.
        Migration of implanted markers for image-guided lung tumor stereotactic ablative radiotherapy.
        J Appl Clin Med Phys. 2013; 14
        • Hardcastle N.
        • Booth J.
        • Caillet V.
        • O’Brien R.
        • Haddad C.
        • Crasta C.
        • et al.
        MO-FG-BRA-06: electromagnetic beacon insertion in lung cancer patients and resultant surrogacy errors for dynamic MLC tumour tracking.
        Med Phys. 2016; 43: 3710-3711
        • James J.
        • Swanson C.
        • Lynch B.
        • Wang B.
        • Dunlap N.E.
        Quantification of planning target volume margin when using a robotic radiosurgery system to treat lung tumors with spine tracking.
        Pract Radiat Oncol. 2015; 5: e337-e343
        • Higgins J.
        • Bezjak A.
        • Franks K.
        • Le L.W.
        • Cho B.
        • Payne D.
        • et al.
        Comparison of spine, carina, and tumor as registration landmarks for volumetric image-guided lung radiotherapy.
        Int J Radiat Oncol Biol Phys. 2009; 73: 1404-1413
        • Lavoie C.
        • Higgins J.
        • Bissonnette J.-P.
        • Le L.W.
        • Sun A.
        • Brade A.
        • et al.
        Volumetric image guidance using carina vs spine as registration landmarks for conventionally fractionated lung radiotherapy.
        Int J Radiat Oncol Biol Phys. 2012; 84: 1086-1092
      7. Fu D, Kahn R, Wang B, Wang H, Mu Z, Park J, et al. Xsight lung tracking system: a fiducial-less method for respiratory motion tracking. Treating Tumors that Move with Respiration: Springer; 2007. p. 265-82.

        • Shieh C.-C.
        • Keall P.J.
        • Kuncic Z.
        • Huang C.-Y.
        • Feain I.
        Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy.
        Phys Med Biol. 2015; 60: 9437
        • Rottmann J.
        • Keall P.
        • Berbeco R.
        Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors.
        Phys Med Biol. 2013; 58: 4195
      8. Mijnheer B, Olaciregui-Ruiz I, Rozendaal R, Spreeuw H, van Herk M, Mans A. Current status of 3D EPID-based in vivo dosimetry in The Netherlands Cancer Institute. Journal of Physics: Conference Series: IOP Publishing; 2015. p. 012014.

        • Woodruff H.C.
        • Fuangrod T.
        • Van Uytven E.
        • McCurdy B.M.
        • van Beek T.
        • Bhatia S.
        • et al.
        First experience with real-time EPID-based delivery verification during IMRT and VMAT sessions.
        Int J Radiat Oncol Biol Phys. 2015; 93: 516-522
        • Shah A.P.
        • Kupelian P.A.
        • Waghorn B.J.
        • Willoughby T.R.
        • Rineer J.M.
        • Mañon R.R.
        • et al.
        Real-time tumor tracking in the lung using an electromagnetic tracking system.
        Int J Radiat Oncol Biol Phys. 2013; 86: 477-483
        • Wilbert J.
        • Baier K.
        • Hermann C.
        • Flentje M.
        • Guckenberger M.
        Accuracy of real-time couch tracking during 3-dimensional conformal radiation therapy, intensity modulated radiation therapy, and volumetric modulated arc therapy for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2013; 85: 237-242
        • Sawant A.
        • Smith R.L.
        • Venkat R.B.
        • Santanam L.
        • Cho B.
        • Poulsen P.
        • et al.
        Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
        Int J Radiat Oncol Biol Phys. 2009; 74: 575-582
        • Caillet V.
        • Colvill E.
        • Szymura K.
        • Stevens M.
        • Booth J.
        • Keall P.
        SU-G-JeP1-05: Clinical Impact of MLC Tracking for Lung SABR.
        Med Phys. 2016; 43: 3648-3649
      9. Colvill E, Poulsen PR, Booth J, O’brien R, Ng J, Keall P. DMLC tracking and gating can improve dose coverage for prostate VMAT. Med Phys. 2014;41.

        • Ruan D.
        Kernel density estimation-based real-time prediction for respiratory motion.
        Phys Med Biol. 2010; 55: 1311
        • Giraud P.
        • Morvan E.
        • Claude L.
        • Mornex F.
        • Le Pechoux C.
        • Bachaud J.-M.
        • et al.
        Respiratory gating techniques for optimization of lung cancer radiotherapy.
        J Thorac Oncol. 2011; 6: 2058-2068
        • D'Ambrosio D.J.
        • Bayouth J.
        • Chetty I.J.
        • Buyyounouski M.K.
        • Price R.A.
        • Correa C.R.
        • et al.
        Continuous localization technologies for radiotherapy delivery: report of the American Society for Radiation Oncology Emerging Technology Committee.
        Pract Radiat Oncol. 2012; 2: 145-150
        • Barnes E.A.
        • Murray B.R.
        • Robinson D.M.
        • Underwood L.J.
        • Hanson J.
        • Roa W.H.
        Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration.
        Int J Radiat Oncol Biol Phys. 2001; 50: 1091-1098
        • Goldstein J.D.
        • Lawrence Y.R.
        • Appel S.
        • Landau E.
        • Ben-David M.A.
        • Rabin T.
        • et al.
        Continuous positive airway pressure for motion management in stereotactic body radiation therapy to the lung: a controlled pilot study.
        Int J Radiat Oncol Biol Phys. 2015; 93: 391-399
      10. T Eade JB, P Keall. Lung Cancer Radiotherapy Using Realtime Dynamic Multileaf Collimator (MLC) Adaptation And Radiofrequency Tracking (LIGHTSABR). ClinicalTrials.gov2015.

        • Daly M.E.
        • Perks J.R.
        • Chen A.M.
        Patterns-of-care for thoracic stereotactic body radiotherapy among practicing radiation oncologists in the United States.
        J Thorac Oncol. 2013; 8: 202-207
        • Heinzerling J.H.
        • Anderson J.F.
        • Papiez L.
        • Boike T.
        • Chien S.
        • Zhang G.
        • et al.
        Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1571-1578
        • Baker R.
        • Han G.
        • Sarangkasiri S.
        • DeMarco M.
        • Turke C.
        • Stevens C.W.
        • et al.
        Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung.
        Int J Radiat Oncol Biol Phys. 2013; 85: 190-195
        • Heerkens H.
        • Reerink O.
        • Intven M.
        • Hiensch R.
        • van den Berg C.
        • Crijns S.
        • et al.
        Pancreatic tumor motion reduction by use of a custom abdominal corset.
        Phys Imaging Radiat Oncol. 2017; 2: 7-10
        • Baba F.
        • Shibamoto Y.
        • Tomita N.
        • Ikeya-Hashizume C.
        • Oda K.
        • Ayakawa S.
        • et al.
        Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results.
        Radiat Oncol. 2009; 4: 15
        • Han K.
        • Cheung P.
        • Basran P.S.
        • Poon I.
        • Yeung L.
        • Lochray F.
        A comparison of two immobilization systems for stereotactic body radiation therapy of lung tumors.
        Radiother Oncol. 2010; 95: 103-108
        • Chao S.T.
        • Koyfman S.A.
        • Woody N.
        • Angelov L.
        • Soeder S.L.
        • Reddy C.A.
        • et al.
        Recursive partitioning analysis index is predictive for overall survival in patients undergoing spine stereotactic body radiation therapy for spinal metastases.
        Int J Radiat Oncol Biol Phys. 2012; 82: 1738-1743
        • Negoro Y.
        • Nagata Y.
        • Aoki T.
        • Mizowaki T.
        • Araki N.
        • Takayama K.
        • et al.
        The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy.
        Int J Radiat Oncol Biol Phys. 2001; 50: 889-898
        • Korreman S.
        • Persson G.
        • Nygaard D.
        • Brink C.
        • Juhler-Nøttrup T.
        Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients.
        Int J Radiat Oncol Biol Phys. 2012; 83: 1338-1343
        • Guckenberger M.
        • Krieger T.
        • Richter A.
        • Baier K.
        • Wilbert J.
        • Sweeney R.A.
        • et al.
        Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy.
        Radiother Oncol. 2009; 91: 288-295
        • Wunderink W.
        • Romero A.M.
        • De Kruijf W.
        • De Boer H.
        • Levendag P.
        • Heijmen B.
        Reduction of respiratory liver tumor motion by abdominal compression in stereotactic body frame, analyzed by tracking fiducial markers implanted in liver.
        Int J Radiat Oncol Biol Phys. 2008; 71: 907-915
        • Bouilhol G.
        • Ayadi M.
        • Rit S.
        • Thengumpallil S.
        • Schaerer J.
        • Vandemeulebroucke J.
        • et al.
        Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study.
        Physica Med. 2013; 29: 333-340
        • Otani Y.
        • Fukuda I.
        • Tsukamoto N.
        • Kumazaki Y.
        • Sekine H.
        • Imabayashi E.
        • et al.
        A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy.
        Med Phys. 2010; 37: 6178-6186
        • Bradley J.D.
        • Nofal A.N.
        • El Naqa I.M.
        • Lu W.
        • Liu J.
        • Hubenschmidt J.
        • et al.
        Comparison of helical, maximum intensity projection (MIP), and averaged intensity (AI) 4D CT imaging for stereotactic body radiation therapy (SBRT) planning in lung cancer.
        Radiother Oncol. 2006; 81: 264-268
        • Weibert K.
        • Biller S.
        • Wendt T.G.
        • Wiezorek T.
        Dosimetry of a linear accelerator under respiratory gating.
        Zeitschrift für Medizinische Physik. 2009; 19: 136-141
        • Li X.A.
        • Stepaniak C.
        • Gore E.
        Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system.
        Med Phys. 2006; 33: 145-154
        • Pollock S.
        • Keall R.
        • Keall P.
        Breathing guidance in radiation oncology and radiology: a systematic review of patient and healthy volunteer studies.
        Med Phys. 2015; 42: 5490-5509