Advertisement
Original paper| Volume 44, P96-107, December 2017

Download started.

Ok

Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy

Published:September 22, 2017DOI:https://doi.org/10.1016/j.ejmp.2017.07.010

      Highlights

      • Monte Carlo study of a realistic mouse head phantom for Microbeam Radiation Therapy.
      • Different results from large phantom, e.g. Zubal head phantom, are obtained.
      • General Monte Carlo code EGSnrc/DOSXYZnrc is adapted to model microbeam array source.
      • Two SR energy spectra are studied by EGSnrc low energy physical models and cross sections.
      • Different results for the lower energy spectrum are obtained.

      Abstract

      Purpose

      To evaluate the influence of energy spectra, mesh sizes, high Z element on dose and PVDR in Microbeam Radiation Therapy (MRT) based on 1-D analogy-mouse-head-model (1-D MHM) and 3-D voxel-mouse-head-phantom (3-D VMHP) by Monte Carlo simulation.

      Methods

      A Microbeam-Array-Source-Model was implemented into EGSnrc/DOSXYZnrc. The microbeam size is assumed to be 25 μm, 50 μm or 75 μm in thickness and fixed 1 mm in height with 200 μm c-t-c. The influence of the energy spectra of ID17@ESRF and BMIT@CLS were investigated. The mesh size was optimized. PVDR in 1-D MHM and 3-D VMHP was compared with the homogeneous water phantom. The arc influence of 3-D VMHP filled with water (3-D VMHWP) was compared with the rectangle phantom.

      Results

      PVDR of the lower BMIT@CLS spectrum is 2.4 times that of ID17@ESRF for lower valley dose. The optimized mesh is 5 µm for 25 µm, and 10 µm for 50 µm and 75 µm microbeams with 200 µm c-t-c. A 500 μm skull layer could make PVDR difference up to 62.5% for 1-D MHM. However this influence is limited (<5%) for the farther homogeneous media (e.g. 600 µm). The peak dose uniformity of 3-D VMHP at the same depth could be up to 8% for 1.85 mm × 1 mm irradiation field, whereas that of 3-D VMHWP is <1%. The high Z element makes the dose uniformity enhance in target. The surface arc could affect the superficial PVDR (from 44% to 21% in 0.2 mm depth), whereas this influence is limited for the more depth (<1%).

      Conclusion

      An accurate MRT dose calculation algorithm should include the influence of 3-D heterogeneous media.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bräuer-Krisch Elke
        • Adam Jean-Francois
        • Alagoz Enver
        • et al.
        Medical physics aspects of the synchrotron radiation therapies: microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT).
        Physica Med. 2015; 31: 568-583
        • Slatkin D.N.
        • Spanne P.
        • Dilmanian F.A.
        • Sandborg M.
        Microbeam radiation therapy.
        Med Phys. 1992; 19: 1395-1400
        • Bouchet A.
        • Lemasson B.
        • Le Duc G.
        • Maisin C.
        • Brauer-Krisch E.
        • Albert Siegbahn E.
        • et al.
        Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9 L gliosarcoma vascular networks.
        Int J Radiat Oncol Biol Phys. 2010; 78: 1503-1512
        • Bartzsch S.
        • Oelfke U.
        A new concept of pencil beam dose calculation for 40–200 keV photons using analytical dose kernels.
        Med Phys. 2013; 40: 111714
        • Martinez-Rovira I.
        • Sempau J.
        • Fernandez-Varea J.M.
        • Bravin A.
        • Prezado Y.
        Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy.
        Phys Med Biol. 2010; 55: 4375-4388
        • Gokeri Gurdal
        • Kocar Cemil
        • Tombakoglu Mehmet
        Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an Au contrast agent in a realistic head phantom.
        Phys Med Biol. 2010; 55: 7469-7487
        • Cornelius I.
        • Guatelli S.
        • Fournier P.
        • Crosbie J.C.
        • Sanchez Del Rio M.
        • Brauer-Krisch E.
        • et al.
        Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.
        J Synchrotron Radiat. 2014; 21: 518-528
        • Siegbahn E.A.
        • Stepanek J.
        • Bräuer-Krisch E.
        • Bravin A.
        Determination of dosimetrical quantities used in microbeam radiation therapy (MRT) with Monte Carlo simulations.
        Med Phys. 2006; 33: 3248-3259
        • Anderson D.
        • Siegbahn E.A.
        • Fallone B.G.
        • Serduc R.
        • Warkentin B.
        Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations.
        Phys Med Biol. 2012; 57: 3223-3248
        • Dilmanian F.A.
        • Zhong Z.
        • Bacarian T.
        • Benveniste H.
        • Romanelli P.
        • Wang R.
        • et al.
        Interlaced x-ray microplanar beams: a radiosurgery approach with clinical potential.
        Proc Natl Acad Sci USA. 2006; 103: 9709-9714
        • Orion I.
        • Rosenfeld A.B.
        • Dilmanian F.A.
        • Telang F.
        • Ren B.
        • Namito Y.
        Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system.
        Phys Med Biol. 2000; 45: 2497-2508
        • Prezado Y.
        • Fois G.
        • Le Duc G.
        • Bravin A.
        Gadolinium dose enhancement studies in microbeam radiation therapy.
        Med Phys. 2009; 36: 3568-3574
        • Lin HuiL.I.N.
        • Jing Jia
        • Lu Yi-Fan
        • Xie Cong
        • Lin Xiao-Jie
        • Yang Guo-Yuan
        Effect of iodine contrast agent concentration on cerebrovascular dose for synchrotron radiation microangiography based on a simple mouse head model and a voxel mouse head phantom by Monte Carlo simulation.
        J Synchrotron Radiat. 2016; 23: 304-311
        • Deman P.
        • Vautrin M.
        • Edouard M.
        • Stupar V.
        • Bobyk L.
        • Farion R.
        • et al.
        Monochromatic minibeams radiotherapy: from healthy tissue-sparing effect studies toward first experimental glioma bearing rats therapy.
        Int J Radiat Oncol Biol Phys. 2012; 82: e693-e700
        • Siegbahn E.A.
        • Bräuer-Krisch E.
        • Stepanek J.
        • Blattmann H.
        • Laissue J.A.
        • Bravin A.
        Dosimetric studies of microbeam radiation therapy (MRT) with Monte Carlo simulations.
        Nucl Instr Meth Phys Res A. 2005; 548: 54-58
        • Romanelli Pantaleo
        • Fardone Erminia
        • Bucci Domenico
        • et al.
        Microradiosurgical cortical transections generated by synchrotron radiation.
        Physica Med. 2015; 31: 642-646
        • Anderson D.L.
        • Mirzayans R.
        • Andrais B.
        • Siegbahn E.A.
        • Fallone B.G.
        • Warkentin B.
        Spatial and temporal distribution of γH2AX fluorescence in human cell cultures following synchrotron-generated X-ray microbeams: lack of correlation between persistent γH2AX foci and apoptosis.
        J Synchrotron Radiat. 2014; 21: 801-810
        • Uyama A.
        • Kondoh T.
        • Nariyama N.
        • Umetani K.
        • Fukumoto M.
        • Shinohara K.
        • et al.
        A narrow microbeam is more effective for tumor growth suppression than a wide microbeam: an in vivo study using implanted human glioma cells.
        J Synchrotron Radiat. 2011; 18: 671-678
        • Régnard Pierrick
        • Bräuer-Krisch Elke
        • Troprès Irène
        • Keyriläinen Jani
        • Bravin Alberto
        • Le Duc Géraldine
        Enhancement of survival of 9 L gliosarcoma bearing rats following intracerebral delivery of drugs in combination with microbeam radiation therapy.
        Eur J Radiol. 2008; 68: S151-S155
        • Dogdas B.
        • Stout D.
        • Chatziioannou A.
        • Leahy R.M.
        Digimouse: a 3D whole body mouse atlas from CT and cryosection data.
        Phys Med Biol. 2007; 52: 577-587
      1. Kawrakow I, Mainegra-Hing E, Rogers DWO, et al. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, NRCC Report PIRS-701; 2010.

        • Walters B.
        • Kawrakow I.
        • Rogers D.W.O.
        NRCC Report PIRS-794revB.
        NRCC, Ottawa2011
        • Serduc R.
        • van de Looij Y.
        • Francony G.
        • et al.
        Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy.
        Phys Med Biol. 2008; 53: 1153-1166
        • Holm Madeleine
        Validation of the Eclipse (TM) treatment planning system for synchrotron microbeam radiotherapy.
        ([Master of Science thesis]) Lund University, 2016
        • Salvat F.
        • Fernandez-Varea J.M.
        • Sempau J.
        PENELOPE-2008, a code system for Monte Carlo simulation of electron and photon transport.
        OECD NEA, Issy-les-Moulineaux France2009
        • Siegbahn E.A.
        Dosimetry for synchrotron x-ray microbeam radiation therapy.
        ([PhD thesis]) Technical University of Munich 40-5, 2005
        • Spiga J.
        • Siegbahn E.A.
        • Brauer-Krisch E.
        • Randaccio P.
        • Bravin A.
        The GEANT4 toolkit for microdosimetry calculations: application to microbeam radiation therapy (MRT).
        Med Phys. 2007; 34: 4322-4330
        • De Felici M.
        • et al.
        Monte Carlo code comparison of dose delivery prediction for microbeam radiation therapy.
        J Phys Conf Ser. 2008; 102: 012005
        • Martinez-Rovira I.
        • Sempau J.
        • Prezado Y.
        Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy.
        Med Phys. 2012; 39: 119-131
        • Fardone E.
        A new application of microbeam radiation therapy (MRT) on the treatment of epilepsy and brain disorders.
        ([PhD thesis]) University of Grenoble, 2013