Advertisement
Original paper| Volume 44, P86-95, December 2017

Download started.

Ok

Use of a second-dose calculation algorithm to check dosimetric parameters for the dose distribution of a first-dose calculation algorithm for lung SBRT plans

      Highlights

      • Monitor unit verification is essential to confirm the accuracy and effectiveness.
      • Verification of lung SBRT plans was performed using a secondary independent TPS.
      • Dosimetric performance of the AXB was almost equal to that of XVMC.
      • The AXB serves as an independent verification method for XVMC.

      Abstract

      Purpose

      To verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs.

      Methods

      A total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean ± 1.96 standard deviations.

      Results

      AXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were −0.3 ± 1.4% and 0.6 ± 2.9%, respectively. Those of D95 were 1.3 ± 1.8% and 1.7 ± 3.6%, respectively.

      Conclusions

      This study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benedict S.H.
        • Yenice K.M.
        • Followill D.
        • Galvin J.M.
        • Hinson W.
        • Kavanagh B.
        • et al.
        Stereotactic body radiation therapy: The report of AAPM Task Group 101.
        Med Phys. 2010; 37: 4078-4101
        • Timmereman R.
        • Papiez L.
        • McGarry R.
        • Likes L.
        • DesRosiers C.
        • Frost S.
        • et al.
        Extracranial stereotactic radioablation: results of a phase I study in medical inoperable stage I non-small cell lung cancer.
        Chest. 2003; 124: 1946-1955
      1. H. Onishi, T. Araki, H. Shirato, and xx, “Stereotactic hypofractionated high-dose irradiation for Stage I non-small cell lung carcinoma clinical outcomes in 245 subjects in a Japanese multiinstitutional study”, Cancer. 101 (7), 1623–1631 (2004).

      2. Y. Nagata, K. Takayama, Y. Matsuo. Y. Norihisa, T. Mizowaki, T. Sakamoto, M. Sakamoto, M. Mitsumori, K. Shibuya, N. Araki, S. Yano, and M. Hiraoka, “Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame”, Int. J. Radiat Oncol Biol Phys. 63 (5), 1427–31 (2005).

        • Knöös T.
        • Wieslander E.
        • Cozzi L.
        • Brink C.
        • Fogliata A.
        • Albers D.
        • et al.
        Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations.
        Phys Med Biol. 2006; 51: 5785-5807
        • Esch A.V.
        • Tillikainen L.
        • Pyykkonen J.
        • Tenhunen Mikko
        • Helminen H.
        • Siljamäki S.
        • et al.
        Testing of the analytical anisotropic algorithm for photon dose calculation.
        Med Phys. 2006; 33: 4130-4148
        • Chow J.C.
        • Leung M.K.
        • Van Dyk J.
        Variations of lung density and geometry on inhomogeneity correction algorithms: a Monte Carlo dosimetric evaluation.
        Med Phys. 2009; 36: 3619-3630
        • Ojala J.
        The accuracy of the Acuros XB algorithm in external beam radiotherapy – a comprehensive review.
        Int J Cancer Ther Oncol. 2014; 2: 020417
        • Vassiliev O.
        • Wareing T.
        • McGhee J.
        • Failla G.
        • Salehpour M.R.
        • Mourtada F.
        Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams.
        Phys Med Biol. 2010; 55: 581-598
      3. Varian Medical Systems. Eclipse reference guide for Eclipse version 11.0.

        • Kawrakow I.
        • Fippel M.
        • Friedrich K.
        3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC).
        Med Phys. 1996; 23: 445-457
        • Fippel M.
        • Haryanto F.
        • Dohm O.
        • Nüsslin F.
        • Kriesen S.
        A virtual photon energy fluence model for Monte Carlo dose calculation.
        Med Phys. 2003; 30: 301-311
        • Fippel M.
        Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm.
        Med Phys. 1999; 26: 1466-1475
        • Ojala J.J.
        • Kapanen M.K.
        • Hyödynmaa S.J.
        • Wigren T.K.
        • Pitkänen M.A.
        Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions.
        J Appl Clin Med Phys. 2014; 15: 4-18
        • Han T.
        • Mikell J.K.
        • Salehpour M.
        • Mourtada F.
        Dosimetric comparison of Acuros XB deterministic transport method with Monte Carlo and model-based convolution methods in heterogeneous media.
        Med Phys. 2011; 38: 2651-2664
        • Tsuruta Y.
        • Nakata M.
        • Nakamura M.
        • Matsuo Y.
        • Higashimura K.
        • Monzen H.
        • et al.
        Dosimetric comparison of Acuros XB, AAA, XVMC in stereotactic body radiotherapy.
        Med Phys. 2014; 41: 081715
        • Stern R.L.
        • Heaton R.
        • Fraser M.W.
        • Goddu S.M.
        • Kirby T.H.
        • Lam K.L.
        • et al.
        Verification of monitor unit calculations for non-IMRT clinical radiotherapy: Report of AAPM Task Group 114.
        Med Phys. 2010; 38: 504-530
        • Kahn R.F.
        • Villarreal-Barajas E.
        • Lau H.
        • Liu H.W.
        Effect of Acuros XB algorithm on monitor units for stereotactic body radiotherapy planning of lung cancer.
        Med Dosim. 2014; 39: 83-87
        • Jeevanandam P.
        • Rajasekaran D.
        • Sukumar P.
        • Nagarajan V.
        In-house spread sheet based monitor unit verification program for volumetric modulated arc therapy.
        Phys Med. 2014; 30: 509-512
        • Rana S.
        • Rogers K.
        • Lee T.
        • Reed D.
        • Biggs C.
        Verification and dosimetric impact of Acuros XB algorithm for stereotactic body radiation therapy (SBRT) and RapidArc planning for non-small-cell lung cancer (NSCLC) patients.
        Int J Med Phys Clin Eng Radiat Oncol. 2013; 2: 6-14
        • Liu H.W.
        • Nugent Z.
        • Clayton R.
        • Dunscombe P.
        • Lau H.
        • Khan R.
        Clinical impact of using the deterministic patient dose calculation algorithm Acuros XB for lung stereotactic body radiation therapy.
        Acta Oncol. 2014; 53: 324-329
        • Kroon P.S.
        • Hol S.
        • Essers M.
        Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans.
        Radiat Oncol. 2013; 8: 149
        • Miura H.
        • Masai N.
        • Oh R.J.
        • Shiomi H.
        • Yamada K.
        • Sasaki J.
        • et al.
        Clinical introduction of Monte Carlo treatment planning for lung stereotactic body radiotherapy.
        J Appl Clin Med Phys. 2014; 15: 38-46
        • Zhuang T.
        • Djemil T.
        • Qi P.
        • Magnelli A.
        • Stephans K.
        • Videtic G.
        • et al.
        Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy.
        J Appl Clin Med Phys. 2013; 14: 38-51
        • Takahashi W.
        • Yamashita H.
        • Saotome N.
        • Iwai Y.
        • Sakumi A.
        • Haga A.
        • et al.
        Evaluation of heterogeneity dose distributions for stereotactic radiotherapy (SRT): comparison of commercially available Monte Carlo dose calculation with other algorithms.
        Radiat Oncol. 2012; 7: 20
        • Narabayashi M.
        • Mizowaki T.
        • Matsuo Y.
        • Nakamura M.
        • Takayama K.
        • Norihisa Y.
        • et al.
        Dosimetric evaluation of the impact of different heterogeneity correction algorithm on target doses in stereotactic body radiation therapy for lung tumors.
        J Radiat Res. 2012; 53: 777-784
        • Mampuya W.A.
        • Matsuo Y.
        • Nakamura A.
        • Nakamura M.
        • Mukumoto N.
        • Miyabe Y.
        • et al.
        Differences in dose-volumetric data between the analytical anisotropic algorithm and x-ray voxel Monte Carlo algorithm in stereotactic body radiation therapy for lung cancer.
        Med Dosim. 2013; 38: 95-99
        • Nakamura M.
        • Sawada A.
        • Ishihara Y.
        • Takayama K.
        • Mizowaki T.
        • Kaneko S.
        • et al.
        Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000.
        Med Phys. 2010; 37: 4684-4691
        • Ishihara Y.
        • Sawada A.
        • Nakamura M.
        • Miyabe Y.
        • Tanabe H.
        • Kaneko S.
        • et al.
        Development of a dose verification system for Vero4DRT using Monte Carlo method.
        J Appl Clin Med Phys. 2014; 15: 160-172
      4. BRAINLAB MONTE CARLO DOSE ALGORITHM Clinical White Paper. https://www.brainlab.com/wp-content/uploads/2014/01/White-Paper-Monte-Carlo.pdf.

        • International Commission on Radiation Units and Measurements
        Photon, electron, proton, and neutron interaction data for body tissues, ICRU Report 46.
        ICRU Publications, Washington, DC1992
        • International Commission on Radiological Protection
        Anatomical, physiological and metabolic characteristics, ICRP report 23.
        ICRP, Oxford1975
        • Ulmer W.
        • Pyyry J.
        • Kaissl W.
        A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations.
        Phys Med Biol. 2005; 50: 1767-1790
        • Tillikainen L.
        • Helminen H.
        • Torsti T.
        • Siljamäki S.
        • Alakuijala J.
        • Pyyry J.
        • et al.
        A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media.
        Phys Med Biol. 2008; 53: 3821-3839
        • Nakamura M.
        • Narita Y.
        • Matsuo Y.
        • Nakata M.
        • Yano S.
        • Miyabe Y.
        • et al.
        Geometrical differences in target volumes between slow CT and 4D CT imaging in stereotactic body radiation therapy for lung tumors in the upper and middle lobe.
        Med Phys. 2008; 35: 41142-44148
        • Nakamura M.
        • Narita Y.
        • Sawada A.
        • Matsugi K.
        • Nakata M.
        • Matsuo Y.
        • et al.
        Impact of motion velocity on four-dimensional target volumes: a phantom study.
        Med Phys. 2009; 36: 1610-1617
        • Das I.J.
        • Ding G.X.
        • Ahnesjö A.
        Small fields: nonequilibrium radiation dosimetry.
        Med Phys. 2008; 35: 206-215
        • Bush K.
        • Gagne I.M.
        • Zavgorodni S.
        • Ansbacher W.
        • Beckham W.
        Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations.
        Med Phys. 2011; 38: 2208-2221
      5. M. Schwarz, G. M. Cattaneo, L. Marrazzo, Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review, Phys. Med. 2017;36:126–39.

        • Mampuya W.A.
        • Nakamura M.
        • Hirose Y.
        • Ishigaki T.
        • Mizowaki T.
        • Hiraoka M.
        Difference in dose-volumetric data between the analytical anisotropic algorithm, the dose-to-medium, and the dose-to-water reporting modes of the Acuros XB for lung stereotactic body radiation therapy.
        J Appl Clin Med Phys. 2014; 17
        • Aarup L.R.
        • Nahum A.E.
        • Zacharatou C.
        • Juhler-Nøttrup T.
        • Knöös T.
        • Nyström H.
        • et al.
        The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: implications for tumour coverage.
        Radiother Oncol. 2009; 91: 405-414
        • Giglioli F.R.
        • Strigari L.
        • Ragona R.
        • et al.
        Lung stereotactic ablative body radiotherapy: a large scale multi-institutional planning comparison for interpreting results of multi-institutional studies.
        Phys Med. 2016; 32: 600-606
      6. A. Fogliata, L. Cozzi, Dose calculation accuracy for small fields in non-homogeneous media: The lung SBRT case, Phys. Med. 2017;44:157–62.

        • Fogliata A.
        • Nicolini G.
        • Clivio A.
        • Vanetti E.
        • Cozzi L.
        Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc® stereotactic treatments.
        Med Phys. 2011; 38: 6228-6237