Advertisement

Deformable image registration applied to lung SBRT: Usefulness and limitations

Published:September 22, 2017DOI:https://doi.org/10.1016/j.ejmp.2017.09.121

      Highlights

      • Review the status of DIR for lung RT, its main applications, its associated uncertainties and its limitations.
      • Large bibliography, classified according to the applications.
      • Focus on the application of DIR in clinic.

      Abstract

      Radiation therapy (RT) of the lung requires deformation analysis. Deformable image registration (DIR) is the fundamental method to quantify deformations for various applications: motion compensation, contour propagation, dose accumulation, etc. DIR is therefore unavoidable in lung RT. DIR algorithms have been studied for decades and are now available both within commercial and academic packages. However, they are complex and have limitations that every user must be aware of before clinical implementation. In this paper, the main applications of DIR for lung RT with their associated uncertainties and their limitations are reviewed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brock K.K.
        • Mutic S.
        • McNutt T.R.
        • Li H.
        • Kessler M.L.
        Use of image registration and fusion algorithms and techniques in radiotherapy: report of the aapm radiation therapy committee task group no. 132.
        Med Phys. 2017;
        • Sotiras A.
        • Davatzikos C.
        • Paragios N.
        Deformable medical image registration: a survey.
        IEEE Trans Med Imaging. 2013; 32: 1153-1190
        • Viergever M.A.
        • Maintz J.A.
        • Klein S.
        • Murphy K.
        • Staring M.
        • Pluim J.P.
        A survey of medical image registration ? Under review.
        Med Image Anal. 2016;
        • Sarrut D.
        Deformable registration for image-guided radiation therapy.
        Z Med Phys. 2006; 16: 285-297
        • Murphy K.
        • van Ginneken B.
        • Reinhardt J.M.
        • Kabus S.
        • Ding K.
        • Deng X.
        • et al.
        Evaluation of registration methods on thoracic ct: the empire10 challenge.
        IEEE Trans Med Imaging. 2011; 30: 1901-1920
        • Saleh Z.
        • Thor M.
        • Apte A.P.
        • Sharp G.
        • Tang X.
        • Veeraraghavan H.
        • et al.
        A multiple-image-based method to evaluate the performance of deformable image registration in the pelvis.
        Phys Med Biol. 2016; 61: 6172-6180
        • Hub M.
        • Karger C.
        Estimation of the uncertainty of elastic image registration with the demons algorithm.
        Phys Med Biol. 2013; 58: 3023-3036
        • Li S.
        • Glide-Hurst C.
        • Lu M.
        • Kim J.
        • Wen N.
        • Adams J.N.
        • et al.
        Voxel-based statistical analysis of uncertainties associated with deformable image registration.
        Phys Med Biol. 2013; 58: 6481-6494
        • Kabus S.
        • Klinder T.
        • Murphy K.
        • Werner R.
        • Sarrut D.
        Validation and comparison of approaches to respiratory motion estimation.
        in: Ehrhardt Jan Lorenz Cristian Book 4D Motion Modeling: Estimation of Respiratory Motion for Radiation Therapy. Springer, Berlin Heidelberg2017: 159-183
        • Rohlfing T.
        Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable.
        IEEE Trans Med Imaging. 2012; 31: 153-163
        • Vandemeulebroucke J.
        • Bernard O.
        • Rit S.
        • Kybic J.
        • Clarysse P.
        • Sarrut D.
        Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic ct.
        Med Phys. 2012; 39: 1006-1015
        • Weistrand O.
        • Svensson S.
        The anaconda algorithm for deformable image registration in radiotherapy.
        Med Phys. 2015; 42: 40-53
        • Johnson P.B.
        • Padgett K.R.
        • Chen K.L.
        • Dogan N.
        Evaluation of the tool reg refine for user-guided deformable image registration.
        J Appl Clin Med Phys. 2016; 17: 6025
        • Peulen H.
        • Belderbos J.
        • Guckenberger M.
        • Hope A.
        • Grills I.
        • van Herk M.
        • Sonke J.-J.
        Target delineation variability and corresponding margins of peripheral early stage nsclc treated with stereotactic body radiotherapy.
        Radiother Oncol. 2015; 114: 361-366
        • Li H.S.
        • Zhong H.
        • Kim J.
        • Glide-Hurst C.
        • Gulam M.
        • Nurushev T.S.
        • et al.
        Direct dose mapping versus energy/mass transfer mapping for 4d dose accumulation: fundamental differences and dosimetric consequences.
        Phys Med Biol. 2014; 59: 173-188
        • Ohira S.
        • Ueda Y.
        • Hashimoto M.
        • Miyazaki M.
        • Isono M.
        • Kamikaseda H.
        • Masaoka A.
        • Takashina M.
        • Koizumi M.
        • Teshima T.
        Vmat-sbrt planning based on an average intensity projection for lung tumors located in close proximity to the diaphragm: a phantom and clinical validity study.
        J Radiat Res. 2016; 57: 91-97
        • Valdes G.
        • Robinson C.
        • Lee P.
        • Morel D.
        • Low D.
        • Iwamoto K.S.
        • Lamb J.M.
        Tumor control probability and the utility of 4d vs 3d dose calculations for stereotactic body radiotherapy for lung cancer.
        Med Dosim. 2015; 40: 64-69
        • White B.M.
        • Santhanam A.
        • Thomas D.
        • Min Y.
        • Lamb J.M.
        • Neylon J.
        • et al.
        Modeling and incorporating cardiac-induced lung tissue motion in a breathing motion model.
        Med Phys. 2014; 41
        • Rao M.
        • Wu J.
        • Cao D.
        • Wong T.
        • Mehta V.
        • Shepard D.
        • et al.
        Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using intensity modulated radiotherapy and volumetric modulated arc therapy [corrected].
        Int J Radiat Oncol Biol Phys. 2012; 83: e251-e256
        • Matney J.
        • Park P.C.
        • Bluett J.
        • Chen Y.P.
        • Liu W.
        • Court L.E.
        • et al.
        Effects of respiratory motion on passively scattered proton therapy versus intensity modulated photon therapy for stage iii lung cancer: are proton plans more sensitive to breathing motion?.
        Int J Radiat Oncol Biol Phys. 2013; 87: 576-582
        • Yang X.
        • Han-Oh S.
        • Gui M.
        • Niu Y.
        • Yu C.X.
        • Yi B.Y.
        Four-dimensional dose distributions of step-and-shoot imrt delivered with real-time tumor tracking for patients with irregular breathing: constant dose rate vs dose rate regulation.
        Med Phys. 2012; 39: 5557-5566
        • Kumagai M.
        • Mori S.
        • Yamamoto N.
        Impact of treatment planning with deformable image registration on dose distribution for carbon-ion beam lung treatment using a fixed irradiation port and rotating couch.
        Br J Radiol. 2015; 88: 20140734
        • Tatekawa K.
        • Iwata H.
        • Kawaguchi T.
        • Ishikura S.
        • Baba F.
        • Otsuka S.
        • et al.
        Changes in volume of stage i non-small-cell lung cancer during stereotactic body radiotherapy.
        Radiat Oncol. 2014; 9: 8
        • Cunliffe A.R.
        • White B.
        • Justusson J.
        • Straus C.
        • Malik R.
        • Al-Hallaq H.A.
        • Armato 3rd, S.G.
        Comparison of two deformable registration algorithms in the presence of radiologic change between serial lung ct scans.
        J Digit Imaging. 2015; 28: 755-760
      1. Rit S, Kuijf H, van Kranen S, van Herk M, Sonke J-J. Computer assisted analysis of lung tumor regression during radiotherapy. In: International conference on the use of computers in radiation therapy.

        • Risholm P.
        • Samsett E.
        • Talos I.-F.
        • Wells W.
        A non-rigid registration framework that accommodates resection and retraction.
        Inf Process Med Imaging. 2009; 21: 447-458
        • Nithiananthan S.
        • Schafer S.
        • Mirota D.J.
        • Stayman J.W.
        • Zbijewski W.
        • Reh D.D.
        • et al.
        Extra-dimensional demons: a method for incorporating missing tissue in deformable image registration.
        Med Phys. 2012; 39: 5718-5731
        • Senthi S.
        • Griffioen G.H.M.J.
        • van Sörnsen J.R.
        • de Koste B.J.
        • Senan Slotman S.
        Comparing rigid and deformable dose registration for high dose thoracic re-irradiation.
        Radiother Oncol. 2013; 106: 323-326
        • Meijneke T.R.
        • Petit S.F.
        • Wentzler D.
        • Hoogeman M.
        • Nuyttens J.J.
        Reirradiation and stereotactic radiotherapy for tumors in the lung: dose summation and toxicity.
        Radiother Oncol. 2013; 107: 423-427
        • Hardcastle N.
        • Bender E.T.
        • Tomé W.A.
        The effect on dose accumulation accuracy of inverse-consistency and transitivity error reduced deformation maps.
        Australas Phys Eng Sci Med. 2014; 37: 321-326
        • Saleh-Sayah N.K.
        • Weiss E.
        • Salguero F.J.
        • Siebers J.V.
        A distance to dose difference tool for estimating the required spatial accuracy of a displacement vector field.
        Med Phys. 2011; 38: 2318-2323
        • Chen G.T.Y.
        • Kung J.H.
        • Beaudette K.P.
        Artifacts in computed tomography scanning of moving objects.
        Semin Radiat Oncol. 2004; 14: 19-26
        • Han D.
        • Bayouth J.
        • Bhatia S.
        • Sonka M.
        • Wu X.
        Characterization and identification of spatial artifacts during 4d-ct imaging.
        Med Phys. 2011; 38: 2074-2087
        • Low D.A.
        • White B.M.
        • Lee P.P.
        • Thomas D.H.
        • Gaudio S.
        • Jani S.S.
        • et al.
        A novel ct acquisition and analysis technique for breathing motion modeling.
        Phys Med Biol. 2013; 58: L31-L36
        • Vandemeulebroucke J.
        • Rit S.
        • Kybic J.
        • Clarysse P.
        • Sarrut D.
        Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs.
        Med Phys. 2011; 38: 166-178
        • Wolthaus J.W.H.
        • Schneider C.
        • Sonke J.-J.
        H, Mid-ventilation ct scan construction from four-dimensional respiration-correlated ct scans for radiotherapy planning of lung cancer patients.
        Int J Radiat Oncol Biol Phys. 2006; 65: 1560-1571
        • Kruis M.F.
        • van de Kamer J.B.
        • Belderbos J.S.A.
        • Sonke J.-J.
        • van Herk M.
        4d ct amplitude binning for the generation of a time-averaged 3d mid-position ct scan.
        Phys Med Biol. 2014; 59: 5517-5529
        • Wolthaus J.W.H.
        • Sonke J.-J.
        • van Herk M.
        • Damen E.M.F.
        Reconstruction of a time-averaged midposition ct scan for radiotherapy planning of lung cancer patients using deformable registration.
        Med Phys. 2008; 35: 3998
        • Guerrero T.
        • Sanders K.
        • Noyola-Martinez J.
        • Castillo E.
        • Zhang Y.
        • Tapia R.
        • et al.
        Quantification of regional ventilation from treatment planning ct.
        Int J Radiat Oncol Biol Phys. 2005; 62: 630-634
      2. McWilliam A, Faivre-Finn C, Kennedy J, Kershaw L, van Herk M, Data mining identifies the base of the heart as a dose-sensitive region affecting survival in lung cancer patients. In: I.J. of Radiation Oncology*Biology*Physics (Ed.), Proceedings of the 58th Annual Meeting of the American Society for Radiation Oncology, volume 96 of 2, pp. S48–S49.

        • Delmon V.
        • Rit S.
        • Pinho R.
        • Sarrut D.
        Registration of sliding objects using direction dependent b-splines decomposition.
        Phys Med Biol. 2013; 58: 1303-1314
      3. Vandemeulebroucke J, Sarrut D, Clarysse P. The popi-model, a point-validated pixel-based breathing thorax model. In: XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), Toronto, Canada, pp. 1–8.

        • Castillo R.
        • Castillo E.
        • Guerra R.
        • Johnson V.E.
        • McPhail T.
        • Garg A.K.
        • et al.
        A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets.
        Phys Med Biol. 2009; 54: 1849-1870