Original paper| Volume 44, P236-242, December 2017

Download started.


Imaging with ultra-small-angle X-ray scattering using a Laue-case analyzer and its application to human breast tumors

Published:November 04, 2017DOI:


      • We developed USAXS imaging using a Laue-case analyzer.
      • We acquired USAXS images of breast tumor specimens.
      • USAXS imaging can extract closely packed scattering bodies in a specimen.
      • Sensitivity can be controlled by changing the threshold level of the rocking curve.
      • A fusion image is useful for studying USAXS image.



      In this study, we demonstrate a novel imaging technique, based on ultra-small-angle X-ray scattering (USAXS) that uses a Laue-case Si wafer as the angle analyzer. Methods: We utilized the (1 1 1) diffraction plane of a 356 μm thick, symmetrically cut Si wafer as the angle analyzer, denoted by A[L]. With this device, we performed USAXS imaging experiments using 19.8 keV synchrotron X-rays. The objects we imaged were formalin-fixed, paraffin-embedded breast tumors (an invasive carcinoma and an intraductal papilloma). During image acquisition by a charge-coupled device (CCD) camera, we varied the rotation angle of the analyzer in 0.02″ steps from −2.40″ to +2.40″ around the Bragg angle. The exposure time for each image was 2 s. We determined the amount of ultra-small-angle X-ray scattering from the width of the intensity curve obtained for each local pixel during the rotation of the analyzer. Results: We acquired USAXS images of malignant and benign breast tumor specimens using the A[L] analyzer; regions with larger USAXS form brighter areas in the image. We varied the sensitivity of the USAXS image by changing the threshold level of the object rocking curve. Conclusions: The USAXS images can provide information about the internal distribution of closely packed scattering bodies in a sample with reasonable sensitivity. This information differs from that obtainable through refraction-contrast imaging. Although further validation studies will be necessary, we conclude that USAXS imaging using a Laue-case analyzer may have significant potential as a new diagnosis technique.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bravin A.
        • Coan P.
        • Suortti P.
        X-ray phase-contrast imaging: from pre-clinical applications towards clinics.
        Phys Med Biol. 2013; 58: R1-R15
        • Suortti P.
        • Keyriläinen J.
        • Thomlinson W.
        Analyzer-based x-ray imaging for biomedical research.
        J Phys D Appl Phys. 2013; 46: 494002
        • Momose A.
        Recent advances in X-ray phase imaging.
        Jpn J Appl Phys. 2005; 44: 6355-6367
        • Takeda T.
        • Momose A.
        • Yu Q.
        • Wu J.
        • Hirano K.
        • Itai Y.
        Phase-contrast X-ray imaging with a large monolithic X-ray interferometer.
        J Synchrotron Radiat. 2000; 7: 280-282
        • Bonse U.
        • Hart M.
        An x-ray interferometer.
        Appl Phys Lett. 1965; 6: 155-156
        • Momose A.
        • Takeda T.
        • Itai Y.
        • Hirano K.
        Phase-contrast X-ray computed tomography for observing biological soft tissues.
        Nat Med. 1996; 2: 473-475
        • Momose A.
        Phase-sensitive imaging and phase tomography using X-ray interferometers.
        Opt Express. 2003; 11: 2303-2314
        • Wilkins W.S.
        • Gureyev T.E.
        • Gao D.
        • Pogany A.
        • Stevenson A.W.
        Phase-contrast imaging using polychromatic hard X-rays.
        Nature. 1996; 384: 335-338
        • Gureyev T.E.
        • Mayo S.C.
        • Myers D.E.
        • Nesterets Y.
        • Paganin D.M.
        • Pogany A.
        • et al.
        Refracting Röntgen’s rays: propagation-based x-ray phase contrast for biomedical imaging.
        J Appl Phys. 2009; 105: 102005
        • Burvall A.
        • Lundström U.
        • Takman P.A.C.
        • Larsson D.H.
        • Hertz H.M.
        Phase retrieval in X-ray phase-contrast imaging suitable for tomography.
        Opt Express. 2011; 19: 10359-10376
        • Ingal V.N.
        • Beliaevskaya E.A.
        X-ray plane-wave topography observation of the phase contrast from a non-crystalline object.
        J Phys D Appl Phys. 1995; 28: 2314-2317
        • Chapman D.
        • Thomlinson W.
        • Johnston R.E.
        • Washburn D.
        • Pisano E.
        • Gmür N.
        • et al.
        Diffraction enhanced X-ray imaging.
        Phys Med Biol. 1997; 42: 2015-2025
      1. Ando M, Maksimenko A, Sugiyama H, Pattanasiriwisawa W, Hyodo K, Uyama C. Simple X-ray dark- and bright-field imaging using achromatic Laue optics. Jpn J Appl Phys 2 Lett 2002;41:L1016–8.

        • Ando M.
        • Sunaguchi N.
        • Shimao D.
        • Pan A.
        • Yuasa T.
        • Mori K.
        • et al.
        Dark-field imaging: recent developments and potential clinical applications.
        Physica Med. 2016; 32: 1801-1812
      2. Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y. Demonstration of X-Ray Talbot Interferometry. Jpn J Appl Phys 2 Lett 2003;42:L866–8.

        • Pfeiffer F.
        • Bech M.
        • Bunk O.
        • Kraft P.
        • Eikenberry E.F.
        • Brönnimann C.
        • et al.
        Hard-X-ray dark-field imaging using a grating interferometer.
        Nat Mater. 2008; 7: 134-137
        • Weitkamp T.
        • David C.
        • Bunk O.
        • Bruder J.
        • Cloetens P.
        • Pfeiffer F.
        X-ray phase radiography and tomography of soft tissue using grating interferometry.
        Eur J Radiol. 2008; 68: S13-S17
        • Wernick M.N.
        • Wirjadi O.
        • Chapman D.
        • Zhong Z.
        • Galatsanos N.P.
        • Yang Y.
        • et al.
        Multiple-image radiography.
        Phys Med Biol. 2004; 48: 3875-3895
        • Khelashvili G.
        • Brankov J.G.
        • Chapman D.
        • Anastasio M.A.
        • Yang Y.
        • Zhong Z.
        • et al.
        A physical model of multiple-image radiography.
        Phys Med Biol. 2006; 51: 221-236
        • Suhonen H.
        • Fernández M.
        • Bravin A.
        • Keyriläinen J.
        • Suortti P.
        Refraction and scattering of X-rays in analyzer-based imaging.
        J Synchrotron Radiat. 2007; 14: 512-521
        • Stutman D.
        • Beck T.J.
        • Carrino J.A.
        • Bingham C.O.
        Talbot phase-contrast x-ray imaging for the small joints of the hand.
        Phys Med Biol. 2011; 56: 5697-5720
      3. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ. WHO Classification of Tumors of the Breast. 4th ed.: IARC Press; 2012.

        • Arfelli F.
        • Bonvicini V.
        • Bravin A.
        • Cantatore G.
        • Castelli E.
        • Palma L.D.
        • et al.
        Mammography with synchrotron radiation: phase-detection techniques.
        Radiology. 2000; 215: 286-293
        • Keyriläinen J.
        • Fernández M.
        • Fiedler S.
        • Bravin A.
        • Karjalainen-Lindsberg M.L.
        • Virkkunen P.
        • et al.
        Visualisation of calcifications and thin collagen strands in human breast tumour specimens by the diffraction-enhanced imaging technique: a comparison with conventional mammography and histology.
        Eur J Radiol. 2005; 53: 226-237
        • Schleede S.
        • Bech M.
        • Grandl S.
        • Sztrókay A.
        • Herzen J.
        • Mayr D.
        • et al.
        X-ray phase-contrast tomosynthesis for improved breast tissue discrimination.
        Eur J Radiol. 2014; 83: 531-536