Highlights
- •Dose discrepancies between type A and B algorithms might be relevant in lung SBRT.
- •Organs-at-risk dose showed strong linear correlation between type A and B algorithms.
- •Nomogram predicts type A to B dose calculation differences in GTV median dose.
- •Good prediction on the GTV D50% re-prescription can be achieved prior planning.
Abstract
Background and Purpose
Material and Methods
Results
Conclusion
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials.Lancet Oncol. 2016; 16: 630-637https://doi.org/10.1016/S1470-2045(15)70168-3.Stereotactic
Bezjak A. RTOG 0813: Seamless Phase I/Ii Study of Stereotactic Lung Radiotherapy (SBRT) for Early Stage, Centrally Located, Non-Small Cell Lung Cancer (NSCLC) in Medically Inoperable Patients. 2011.
Timmerman RD, Michalski J, Fowler J, Choy H, Johnstone D, Galvin JM, et al. Radiation therapy oncology group RTOG 0236 A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Medically Inoperable Stage I / II Non-Small Cell Lung Cancer. 2004;6.
- Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT).Phys Medica. 2016; 32: 305-311https://doi.org/10.1016/j.ejmp.2015.10.093
- Clinical outcomes of 130 patients with primary and secondary lung tumors treated with Cyberknife robotic stereotactic body radiotherapy.Radiol Oncol. 2017; 51: 178-186https://doi.org/10.1515/raon-2017-0015
- Address IP. Collapsed cone and analytical anisotropic algorithm dose calculations compared to VMC ++ Monte Carlo simulations in clinical cases.J Phys Conf Ser. 2007; 21007https://doi.org/10.1088/1742-6596/74/1/012007
- Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC.Phys Med Biol. 2000; 45: 2163-2183https://doi.org/10.1088/0031-9155/45/8/308
- Monte carlo photon beam modeling and commissioning for radiotherapy dose calculation algorithm.Phys Medica. 2014; 30: 833-837https://doi.org/10.1016/j.ejmp.2014.05.007
- Clinical implementation of a Monte Carlo treatment planning system.Med Phys. 1999; 26: 2133-2143https://doi.org/10.1118/1.598729
- Clinical introduction of Monte Carlo treatment planning: a different prescription dose for non-small cell lung cancer according to tumor location and size.Radiother Oncol. 2010; 96: 55-60https://doi.org/10.1016/j.radonc.2010.04.009
- Adapted prescription dose for monte carlo algorithm in lung SBRT: clinical outcome on 205 patients.PLoS One. 2015; 10https://doi.org/10.1371/journal.pone.0133617
Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): J ICRU 2010;10:NP.3-NP. doi: http://doi.org/10.1093/jicru/ndq002.
Program C, Quantities F, Quality I, Ion-beam R. The International commission on radiation units and measurements. J ICRU 2010;10:NP.2-NP. doi: http://doi.org/10.1093/jicru/ndq001.
- GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.Radiat Oncol. 2014; 9: 223https://doi.org/10.1186/s13014-014-0223-5
- An overview of hypofractionation and introduction to this issue of seminars in radiation oncology.Semin Radiat Oncol. 2008; 18: 215-222https://doi.org/10.1016/j.semradonc.2008.04.001
- Commissioning Monte Carlo algorithm for robotic radiosurgery using cylindrical 3D-array with variable density inserts.Phys Med. 2017; 33: 152-158https://doi.org/10.1016/j.ejmp.2017.01.005
- Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients.Radiother Oncol. 2013; 109: 100-106https://doi.org/10.1016/j.radonc.2013.08.035
- Wrappers for feature subset selection.Artif Intell. 1997; 97: 273-324https://doi.org/10.1016/S0004-3702(97)00043-X
- Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose.Radiat Oncol. 2008; 3: 21https://doi.org/10.1186/1748-717X-3-21
- Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT).Acta Oncol. 2006; 45: 989-994https://doi.org/10.1080/02841860600919225
- Stereotactic robotic body radiotherapy for patients with unresectable hepatic oligorecurrence.Clin Colorectal Cancer. 2016; https://doi.org/10.1016/j.clcc.2017.03.006
- EP-1226: Stereotactic robotic body radiotherapy for patients with pulmonary oligometastases.Radiother Oncol. 2017; 123: S661-S662https://doi.org/10.1016/S0167-8140(17)31661-4
- Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy.J Appl Clin Med Phys. 2013; 14: 4011https://doi.org/10.1120/jacmp.v14i2.4011
- Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy.J Appl Clin Med Phys. 2013; 14: 38-51https://doi.org/10.1120/jacmp.v14i2.4011
- Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT.Radiat Oncol. 2016; 11: 83https://doi.org/10.1186/s13014-016-0661-3
- Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT.J Appl Clin Med Phys. 2015; 16: 5514https://doi.org/10.1120/JACMP.V16I6.5514
- Dosimetric errors during treatment of centrally located lung tumors with stereotactic body radiation therapy: Monte Carlo evaluation of tissue inhomogeneity corrections.Med Dosim. 2013; 38: 436-441https://doi.org/10.1016/j.meddos.2013.06.002