Advertisement
Original paper| Volume 45, P88-92, January 2018

Download started.

Ok

Prediction of GTV median dose differences eases Monte Carlo re-prescription in lung SBRT

      Highlights

      • Dose discrepancies between type A and B algorithms might be relevant in lung SBRT.
      • Organs-at-risk dose showed strong linear correlation between type A and B algorithms.
      • Nomogram predicts type A to B dose calculation differences in GTV median dose.
      • Good prediction on the GTV D50% re-prescription can be achieved prior planning.

      Abstract

      Background and Purpose

      The use of Monte Carlo (MC) dose calculation algorithm for lung patients treated with stereotactic body radiotherapy (SBRT) can be challenging. Prescription in low density media and time-consuming optimization conducted CyberKnife centers to propose an equivalent path length (EPL)-to-MC re-prescription method based on GTV median dose. Unknown at the time of planning, GTV D50% practical application remains difficult. The current study aims at creating a re-prescription predictive model in order to limit conflicting dose value during EPL optimization.

      Material and Methods

      129 patients planned with EPL algorithm were recalculated with MC. Relative GTV_D50% discrepancies were assessed and influencing parameters identified using wrapper feature selection. Based on best descriptive parameters, predictive nomogram was built from multivariate linear regression. EPL-to-MC OARs near max-dose discrepancies were reported.

      Results

      The differences in GTV_D50% (median 10%, SD: 9%) between MC and EPL were significantly (p < .001) impacted by the lesion’s surface-to-volume ratio and the average relative electronic density of the GTV and the GTV’s 15 mm shell. Built upon those parameters, a nomogram (R2 = 0.79, SE = 4%) predicting the GTV_D50% discrepancies was created. Furthermore EPL-to-MC OAR dose tolerance limit showed a strong linear correlation with coefficient range [0.84–0.99].

      Conclusion

      Good prediction on the required re-prescription can be achieved prior planning using our nomogram. Based on strong linear correlation between EPL and MC for OARs near max-dose, further restriction on dose constraints during the EPL optimization can be warranted. This a priori knowledge eases the re-prescription process in limiting conflicting dose value.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chang J.Y.
        • Senan S.
        • Paul M.A.
        • Mehran R.J.
        • Louie A.V.
        • Groen H.J.M.
        • et al.
        Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials.
        Lancet Oncol. 2016; 16: 630-637https://doi.org/10.1016/S1470-2045(15)70168-3.Stereotactic
      1. Bezjak A. RTOG 0813: Seamless Phase I/Ii Study of Stereotactic Lung Radiotherapy (SBRT) for Early Stage, Centrally Located, Non-Small Cell Lung Cancer (NSCLC) in Medically Inoperable Patients. 2011.

      2. Timmerman RD, Michalski J, Fowler J, Choy H, Johnstone D, Galvin JM, et al. Radiation therapy oncology group RTOG 0236 A Phase II Trial of Stereotactic Body Radiation Therapy (SBRT) in the Treatment of Patients with Medically Inoperable Stage I / II Non-Small Cell Lung Cancer. 2004;6.

        • Harada K.
        • Katoh N.
        • Suzuki R.
        • Ito Y.M.
        • Shimizu S.
        • Onimaru R.
        • et al.
        Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT).
        Phys Medica. 2016; 32: 305-311https://doi.org/10.1016/j.ejmp.2015.10.093
        • Janvary Z.L.
        • Jansen N.
        • Baart V.
        • Devillers M.
        • Dechambre D.
        • Lenaerts E.
        • et al.
        Clinical outcomes of 130 patients with primary and secondary lung tumors treated with Cyberknife robotic stereotactic body radiotherapy.
        Radiol Oncol. 2017; 51: 178-186https://doi.org/10.1515/raon-2017-0015
        • Search H.
        • Journals C.
        • Contact A.
        • Iopscience M.
        Address IP. Collapsed cone and analytical anisotropic algorithm dose calculations compared to VMC ++ Monte Carlo simulations in clinical cases.
        J Phys Conf Ser. 2007; 21007https://doi.org/10.1088/1742-6596/74/1/012007
        • Kawrakow I.
        • Fippel M.
        Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC.
        Phys Med Biol. 2000; 45: 2163-2183https://doi.org/10.1088/0031-9155/45/8/308
        • Toutaoui A.
        • Ait chikh S.
        • Khelassi-Toutaoui N.
        • Hattali B.
        Monte carlo photon beam modeling and commissioning for radiotherapy dose calculation algorithm.
        Phys Medica. 2014; 30: 833-837https://doi.org/10.1016/j.ejmp.2014.05.007
        • Ma C.-M.
        • Mok E.
        • Kapur A.
        • Pawlicki T.
        • Findley D.
        • Brain S.
        • et al.
        Clinical implementation of a Monte Carlo treatment planning system.
        Med Phys. 1999; 26: 2133-2143https://doi.org/10.1118/1.598729
        • van der Voort van Zyp N.C.
        • Hoogeman M.S.
        • van de Water S.
        • Levendag P.C.
        • van der Holt B.
        • Heijmen B.J.
        • et al.
        Clinical introduction of Monte Carlo treatment planning: a different prescription dose for non-small cell lung cancer according to tumor location and size.
        Radiother Oncol. 2010; 96: 55-60https://doi.org/10.1016/j.radonc.2010.04.009
        • Bibault J.E.
        • Mirabel X.
        • Lacornerie T.
        • Tresch E.
        • Reynaert N.
        • Lartigau E.
        Adapted prescription dose for monte carlo algorithm in lung SBRT: clinical outcome on 205 patients.
        PLoS One. 2015; 10https://doi.org/10.1371/journal.pone.0133617
      3. Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT): J ICRU 2010;10:NP.3-NP. doi: http://doi.org/10.1093/jicru/ndq002.

      4. Program C, Quantities F, Quality I, Ion-beam R. The International commission on radiation units and measurements. J ICRU 2010;10:NP.2-NP. doi: http://doi.org/10.1093/jicru/ndq001.

        • Lacornerie T.
        • Lisbona A.
        • Mirabel X.
        • Lartigau E.
        • Reynaert N.
        GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.
        Radiat Oncol. 2014; 9: 223https://doi.org/10.1186/s13014-014-0223-5
        • Timmerman R.D.
        An overview of hypofractionation and introduction to this issue of seminars in radiation oncology.
        Semin Radiat Oncol. 2008; 18: 215-222https://doi.org/10.1016/j.semradonc.2008.04.001
        • Dechambre D.
        • Baart V.
        • Cucchiaro S.
        • Ernst C.
        • Jansen N.
        • Berkovic P.
        • et al.
        Commissioning Monte Carlo algorithm for robotic radiosurgery using cylindrical 3D-array with variable density inserts.
        Phys Med. 2017; 33: 152-158https://doi.org/10.1016/j.ejmp.2017.01.005
        • Nalbantov G.
        • Kietselaer B.
        • Vandecasteele K.
        • Oberije C.
        • Berbee M.
        • Troost E.
        • et al.
        Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients.
        Radiother Oncol. 2013; 109: 100-106https://doi.org/10.1016/j.radonc.2013.08.035
        • Kohavi R.
        • John G.H.
        Wrappers for feature subset selection.
        Artif Intell. 1997; 97: 273-324https://doi.org/10.1016/S0004-3702(97)00043-X
        • Schuring D.
        • Hurkmans C.W.
        Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose.
        Radiat Oncol. 2008; 3: 21https://doi.org/10.1186/1748-717X-3-21
        • Rassiah-Szegedi P.
        • Salter B.J.
        • Fuller C.D.
        • Blough M.
        • Papanikolaou N.
        • Fuss M.
        Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT).
        Acta Oncol. 2006; 45: 989-994https://doi.org/10.1080/02841860600919225
        • Berkovic P.
        • Gulyban A.
        • Nguyen P.V.
        • Dechambre D.
        • Martinive P.
        • Jansen N.
        • et al.
        Stereotactic robotic body radiotherapy for patients with unresectable hepatic oligorecurrence.
        Clin Colorectal Cancer. 2016; https://doi.org/10.1016/j.clcc.2017.03.006
        • Berkovic P.
        • Gulyban A.
        • Swenen L.
        • Dechambre D.
        • Viet Nguyen P.
        • Jansen N.
        • et al.
        EP-1226: Stereotactic robotic body radiotherapy for patients with pulmonary oligometastases.
        Radiother Oncol. 2017; 123: S661-S662https://doi.org/10.1016/S0167-8140(17)31661-4
        • Zhuang T.
        • Djemil T.
        • Qi P.
        • Magnelli A.
        • Stephans K.
        • Videtic G.
        • et al.
        Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy.
        J Appl Clin Med Phys. 2013; 14: 4011https://doi.org/10.1120/jacmp.v14i2.4011
        • Zhuang T.
        • Djemil T.
        • Qi P.
        • Magnelli A.
        • Stephans K.
        • Videtic G.
        • et al.
        Dose calculation differences between Monte Carlo and pencil beam depend on the tumor locations and volumes for lung stereotactic body radiation therapy.
        J Appl Clin Med Phys. 2013; 14: 38-51https://doi.org/10.1120/jacmp.v14i2.4011
        • Zheng D.
        • Zhu X.
        • Zhang Q.
        • Liang X.
        • Zhen W.
        • Lin C.
        • et al.
        Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT.
        Radiat Oncol. 2016; 11: 83https://doi.org/10.1186/s13014-016-0661-3
        • Liu H.
        • Zhuang T.
        • Stephans K.
        • Videtic G.
        • Raithel S.
        • Djemil T.
        • et al.
        Dose differences in intensity-modulated radiotherapy plans calculated with pencil beam and Monte Carlo for lung SBRT.
        J Appl Clin Med Phys. 2015; 16: 5514https://doi.org/10.1120/JACMP.V16I6.5514
        • Altunbas C.
        • Kavanagh B.
        • Dzingle W.
        • Stuhr K.
        • Gaspar L.
        • Miften M.
        Dosimetric errors during treatment of centrally located lung tumors with stereotactic body radiation therapy: Monte Carlo evaluation of tissue inhomogeneity corrections.
        Med Dosim. 2013; 38: 436-441https://doi.org/10.1016/j.meddos.2013.06.002