Advertisement

Experimental optimisation of the X-ray energy in microbeam radiation therapy

      Abstract

      Microbeam radiation therapy has demonstrated superior normal tissue sparing properties compared to broadbeam radiation fields. The ratio of the microbeam peak dose to the valley dose (PVDR), which is dependent on the X-ray energy/spectrum and geometry, should be maximised for an optimal therapeutic ratio. Simulation studies in the literature report the optimal energy for MRT based on the PVDR. However, most of these studies have considered different microbeam geometries to that at the Imaging and Medical Beamline (50 μm beam width with a spacing of 400 μm). We present the first fully experimental investigation of the energy dependence of PVDR and microbeam penumbra. Using monochromatic X-ray energies in the range 40–120 keV the PVDR was shown to increase with increasing energy up to 100 keV before plateauing. PVDRs measured for pink beams were consistently higher than those for monochromatic energies similar or equivalent to the average energy of the spectrum. The highest PVDR was found for a pink beam average energy of 124 keV. Conversely, the microbeam penumbra decreased with increasing energy before plateauing for energies above 90 keV. The effect of bone on the PVDR was investigated at energies 60, 95 and 120 keV. At depths greater than 20 mm beyond the bone/water interface there was almost no effect on the PVDR. In conclusion, the optimal energy range for MRT at IMBL is 90–120 keV, however when considering the IMBL flux at different energies, a spectrum with 95 keV weighted average energy was found to be the best compromise.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schültke E.
        • Balosso J.
        • Breslin T.
        • Cavaletti G.
        • Djonov V.
        • Esteve F.
        • et al.
        Microbeam radiation therapy: grid therapy and beyond. A clinical perspective.
        Br J Radiol. 2017; (Epub ahead of print)https://doi.org/10.1259/bjr.20170073
        • Mohiuddin M.
        • Fujita M.
        • Regine W.F.
        • Megooni A.S.
        • Ibbott G.S.
        • Ahmed M.M.
        High-dose spatially-fractionated Radiation (GRID): a new paradigm in the management of advanced cancers.
        Int J Radiat Oncol Biol Phys. 1999; 45: 721-727
        • Ha J.K.
        • Zhang G.
        • Naqvi S.A.
        • Regine W.F.
        • Yu C.X.
        Feasibility of delivering grid therapy using a multileaf collimator.
        Med Phys. 2005; 33: 76-82
        • Shirato H.
        • Gupta N.K.
        • Jordan T.J.
        • Henry J.H.
        Lack of late skin necrosis in man after high-dose irradiation using small field sizes.
        Br J Radiol. 1990; 63: 871-874
        • Zeman W.
        • Curtis H.J.
        • Baker C.P.
        Histopathologic effecit of high-energy-particle mmicrobeam on the visual cortex of the mouse brain.
        Radiat Res. 1961; 15: 496-514
        • Curtis H.J.
        The use of a deuteron microbeam for simulating the biological effects of heavy cosmic-ray particles.
        Radiat Res Suppl. 1967; 7: 250-257
        • Slatkin D.N.
        • Spanne P.
        • Dilmanian F.A.
        • Gebbers J.-O.
        • Laissue J.A.
        Subacute neuropathological effects of microplanar bbeam of x-rays from a synchrotron wiggler.
        Proc Natl Acad Sci USA. 1995; 92: 8783-8787
        • Laissue J.A.
        • Geiser G.
        • Spanne P.O.
        • Dilmanian F.A.
        • Gebbers J.O.
        • Geiser M.
        • et al.
        Neuropathology of ablation of rat gliosarcoma and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated x-rays.
        Int J Cancer. 1998; 78: 654-660
        • Laissue J.A.
        • Lyubimova N.
        • Wagner H.P.
        • Archer D.W.
        • Slatkin D.N.
        • Di Michiel M.
        • et al.
        Microbeam radiation therapy.
        in: Proc. SPIE. 3770, medical applications of penetrating radiation. 1999: 38-45
        • Serduc R.
        • van de Looij Y.
        • Francony G.
        • Verdonck O.
        • van der Sanden B.
        • Laissue J.
        • et al.
        Characterization and quantification of cerebral edema induced by synchrotron x-ray microbeam radiation therapy.
        Phys Med Biol. 2008; 53: 1153-1166
        • Serduc R.
        • Bräuer-Krisch E.
        • Siegbahn E.A.
        • Bouchet A.
        • Pouyatos B.
        • Carron R.
        • et al.
        High-precision radiosurgical dose delivery by interlaced microbeam arrays of high-flux low-energy synchrotron X-rays.
        PLoS ONE. 2010; 5: e9028
        • Bräuer-Krisch E.
        • Serduc R.
        • Siegbahn E.A.
        • Le Duc G.
        • Prezado Y.
        • Bravin A.
        • et al.
        Effects of pulsed, spatially fractionated microscopic synchrotron X-ray bbeam on normal and tumoral brain tissue.
        Mutat Res. 2010; 704: 160-166
        • Bouchet A.
        • Lemasson B.
        • Duc G.L.
        • Maisin C.
        • Bräuer-Krisch E.
        • Siegbahn E.A.
        • et al.
        Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks.
        Int J Radiat Oncol Biol Phys. 2011; 78: 1503-1512
        • Bouchet A.
        • Lemasson B.
        • Christen T.
        • Potez M.
        • Rome C.
        • Coquery N.
        • et al.
        Synchrotron microbeam Radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain.
        Radiother Oncol. 2013; 108: 143-148
        • Bouchet A.
        • Serduc R.
        • Laissue J.A.
        • Djonov V.
        Effects of microbeam radiation therapy on normal and tumoral blood vessels.
        Phys Med. 2015; 31: 634-641
        • Laissue J.A.
        • Blattmann H.
        • Di Michiel M.
        • Slatkin D.N.
        • Lyubimova N.
        • Guzman R.
        • et al.
        Weaning piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology.
        in: Proc. SPIE. 4508, penetrating radiation systems and applications II I. 2001: 65-73
        • Laissue J.A.
        • Blattmann H.
        • Wagner H.P.
        • Grotzer M.A.
        • Slatkin D.N.
        Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae.
        Dev Med Child Neurol. 2007; 49: 577-581
        • Grotzer M.A.
        • Schültke E.
        • Bräuer-Krisch E.
        • Laissue J.A.
        Microbeam radiation therapy: clinical perspectives.
        Phys Med. 2015; 31: 564-567
        • Bräuer-Krisch E.
        • Bravin A.
        • Zhang L.
        • Siegbahn E.
        • Stepanek J.
        • Blattmann H.
        • Slatkin D.N.
        • Gebbers J.O.
        • Jasmin M.
        • Laissue J.A.
        Characterization of a tungsten/gas multislit collimator for microbeam radiation therapy at the European Synchrotron Radiation Facility.
        Rev Sci Instrum. 2005; 76: 064303
        • Siegbahn E.A.
        • Stepanek J.
        • Bräuer-Krisch E.
        • Bravin A.
        Determination of dosimetrical quantities used in microbeam radiation therapy (MRT) with Monte Carlo simulations.
        Med Phys. 2006; 33: 3248-3259
        • Serduc R.
        • Bouchet A.
        • Bräuer-Krisch E.
        • Laissue J.A.
        • Spiga J.
        • Sarun S.
        • et al.
        Synchrotron microbeam radiation therapy for rat brain tumor palliation – influence of the microbeam width at constant valley dose.
        Phys Med Biol. 2009; 54: 6711-6724
        • Martínez-Rovira I.
        • Sempau J.
        • Fernández-Varea J.M.
        • Bravin A.
        • Prezado Y.
        Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy.
        Phys Med Biol. 2010; 55: 4375-4388
        • Ibahim M.J.
        • Crosbie J.C.
        • Yang Y.
        • Zaitseva M.
        • Stevenson A.W.
        • Rogers P.A.W.
        • Paiva P.
        An evaluation of dose equivalence between synchrotron Microbeam Radiation Therapy and conventional broadbeam radiation using clonogenic and cell impedance assays.
        PLoS ONE. 2014; 9: e100547
        • Stepanek J.
        • Blattmann H.
        • Laissue J.A.
        • Lyubimova N.
        • Di Michiel M.
        • Slatkin D.N.
        Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool.
        Med Phys. 2000; 27: 1664-1675
        • De Felici M.
        • Felici R.
        • Sanchez del Rio M.
        • Ferrero C.
        • Bacarian T.
        • Dilmanian F.A.
        Dose distribution from x-ray microbeam arrays applied to radiation therapy: an EGS4 Monte Carlo study.
        Med Phys. 2005; 32: 2455-2463
        • Spiga J.
        • Siegbahn E.A.
        • Bräuer-Krisch E.
        • Randaccio P.
        • Bravin A.
        The GEANT4 toolkit for microdosimetry calculations: application to microbeam radiation therapy (MRT).
        Med Phys. 2007; 34: 4322-4330
        • Prezado Y.
        • Fois G.
        • Le Duc G.
        • Bravin A.
        Gadolinium dose enhancement studies in microbeam radiation therapy.
        Med Phys. 2009; 36: 3568-3574
        • Shinohara K.
        • Kondoh T.
        • Nariyama N.
        • Fujita H.
        • Washio M.
        • Aoki Y.
        Optimization of X-ray microplanaar beam radiation therapy for deep-seated ttumor by a simulation study.
        J X-ray Sci Technol. 2014; 22: 395-406
        • Livingstone J.
        • Adam J.-F.
        • Crosbie J.
        • Hall C.
        • Lye J.
        • McKinlay J.
        • et al.
        Preclinical radiotherapy at the Australian Synchrotron’s Imaging and Medical Beamline: Instrumentation, dosimetry and a small animal feasibility study.
        J Synchrotron Rad. 2017; 24: 854-865
        • Stevenson A.W.
        • Crosbie J.C.
        • Hall C.J.
        • Häusermann D.
        • Livingstone J.
        • Lye J.E.
        Quantitative characterisation of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL).
        J Synchrotron Rad. 2017; 24: 110-141
        • Livingstone J.
        • Stevenson A.W.
        • Butler D.J.
        • Häusermann D.
        • Adam J.F.
        Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.
        Med Phys. 2016; 43: 4283-4293
        • Nath R.
        • Biggs P.J.
        • Bova F.J.
        • Ling C.C.
        • Purdy J.A.
        • van de Geijn J.
        • Weinhous M.S.
        AAPM Code of practice for radiotherapy accelerators: report of AAPM radiation therapy task group 45.
        Med Phys. 1994; 21: 1093-1121
        • Lynnerup N.
        Cranial thickness in relation to age, sex and general body build in a Danish forensic sample.
        Forensic Sci Int. 2001; 117: 45-51
        • Martínez-Rovira I.
        • Sempau J.
        • Prezado Y.
        Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy.
        Med Phys. 2012; 39: 119-131
        • Martínez-Rovira I.
        • Sempau J.
        • Prezado Y.
        Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.
        Med Phys. 2012; 39: 2829-2838