Advertisement
Review paper| Volume 56, P19-24, December 2018

SBRT targets that move with respiration

      Highlights

      • Summary of image guidance to localize the target in real-time for intra-fraction motion.
      • Discussion of state-of-the art respiratory motion management.
      • Approaches to real-time tracking.
      • Real-time tracking technologies in clinical trial and clinical use.
      • Clinical application of real-time MRI soft-tissue imaging for real-time adaptive treatments.

      Abstract

      The technology of treating SBRT targets that move with respiration has undergone profound changes over the last 20 years. This review article summarizes modern image guidance to localize the target in real-time to account for intra-fraction motion. The state-of-the art respiratory motion compensation techniques will be discussed, including the determination and application of appropriate margins. This includes compression, gating and breath-hold, including the use of audiovisual feedback to manage motion. Approaches to real-time tracking include the use of hybrid external-internal imaging to build a skin-to-tumor correlation, which can then be tracked with a mobile robot (CyberKnife Synchrony, clinical since 2003) as well as the use of non-ionizing electromagnetic tumor surrogate localization followed by real-time tracking with a moving MLC (in clinical trials in Europe and Australia). Lastly, the clinical application of real-time MRI soft-tissue imaging to deliver adaptive, iso-toxic treatments will be presented.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Loo B.W.
        • Chang J.Y.
        • Dawson L.A.
        • Kavanagh B.D.
        • Koong A.C.
        • Senan S.
        • et al.
        Stereotactic ablative radiotherapy: what’s in a name?.
        Elsevier, 2011
        • Sahgal A.
        • Roberge D.
        • Schellenberg D.
        • Purdie T.
        • Swaminath A.
        • Pantarotto J.
        • et al.
        The Canadian Association of Radiation Oncology scope of practice guidelines for lung, liver and spine stereotactic body radiotherapy.
        Clinical Oncol. 2012; 24: 629-639
        • Rusthoven K.E.
        • Kavanagh B.D.
        • Burri S.H.
        • Chen C.
        • Cardenes H.
        • Chidel M.A.
        • et al.
        Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases.
        J Clin Oncol. 2009; 27: 1579-1584
        • Timmerman R.
        • Paulus R.
        • Galvin J.
        • Michalski J.
        • Straube W.
        • Bradley J.
        • et al.
        Stereotactic body radiation therapy for inoperable early stage lung cancer.
        JAMA. 2010; 303: 1070-1076
        • Ricardi U.
        • Badellino S.
        • Filippi A.R.
        What do radiation oncologists require for future advancements in lung SBRT?.
        Physica Medica: Eur J Med Phys. 2017; 44: 150-156
        • Velec M.
        • Moseley J.L.
        • Craig T.
        • Dawson L.A.
        • Brock K.K.
        Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects.
        Int J Radiat Oncol Biol Phys. 2011;
        • McPartlin A.
        • Swaminath A.
        • Wang R.
        • Pintilie M.
        • Brierley J.
        • Kim J.
        • et al.
        Long term outcomes of phase I and II studies of SBRT for hepatic colorectal metastases.
        Int J Radiat Oncol Biol Phys. 2017;
        • Goodman K.A.
        • Wiegner E.A.
        • Maturen K.E.
        • Zhang Z.
        • Mo Q.
        • Yang G.
        • et al.
        Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies.
        Int J Radiat Oncol Biol Phys. 2010; 78: 486-493
        • Rusthoven K.E.
        • Kavanagh B.D.
        • Cardenes H.
        • Stieber V.W.
        • Burri S.H.
        • Feigenberg S.J.
        • et al.
        Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases.
        J Clin Oncol. 2009; 27: 1572-1578
        • Murphy M.J.
        • Adler Jr., J.R.
        • Bodduluri M.
        • Dooley J.
        • Forster K.
        • Hai J.
        • et al.
        Image-guided radiosurgery for the spine and pancreas.
        Comput Aided Surg. 2000; 5: 278-288
        • Chang D.T.
        • Schellenberg D.
        • Shen J.
        • Kim J.
        • Goodman K.A.
        • Fisher G.A.
        • et al.
        Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas.
        Cancer. 2009; 115: 665-672
        • Mahadevan A.
        • Jain S.
        • Goldstein M.
        • Miksad R.
        • Pleskow D.
        • Sawhney M.
        • et al.
        Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer.
        Int J Radiat Oncol Biol Phys. 2010; 78: 735-742
        • Fortin D.
        • Mestrovic A.
        • Alexander A.
        Stereotactic ablative radiation therapy with volumetric modulated arc therapy in flattening filter-free mode for low-, intermediate-, and high-risk prostate cancer patients: Are 2 arcs better than 1?.
        Pract Radiat Oncol. 2015;
        • Freeman D.E.
        • King C.R.
        Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes.
        Radiat Oncol. 2011; 6: 3
        • King C.R.
        • Brooks J.D.
        • Gill H.
        • Pawlicki T.
        • Cotrutz C.
        • Presti Jr, J.C.
        Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial.
        Int J Radiat Oncol Biol Phys. 2009; 73: 1043-1048
        • Mancosu P.
        • Clemente S.
        • Landoni V.
        • Ruggieri R.
        • Alongi F.
        • Scorsetti M.
        • et al.
        SBRT for prostate cancer: challenges and features from a physicist prospective.
        Phys Med: Eur J Med Phys. 2016; 32: 479-484
        • Gardner E.A.
        • Sumanaweera T.S.
        • Blanck O.
        • Iwamura A.K.
        • Steel J.P.
        • Dieterich S.
        • et al.
        In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.
        J Appl Clin Med Phys. 2012; 13: 3745
        • Sharma A.
        • Wong D.
        • Weidlich G.
        • Fogarty T.
        • Jack A.
        • Sumanaweera T.
        • et al.
        Non-invasive stereotactic radiosurgery (CyberHeart™) for the creation of ablation lesion in the atrium.
        Heart Rhythm. 2010; 7: 802-810
        • Lydiard S.
        • Caillet V.
        • Ipsen S.
        • O'Brien R.T.
        • Blanck O.
        • Poulsen P.R.
        • Booth J.P.
        Investigating MLC tracking in stereotactic arrhythmic radioablation (STAR) treatments for atrial fibrillation.
        Phys Med Biol. 2018;
        • Blanck O.
        • Ipsen S.
        • Chan M.K.
        • Bauer R.
        • Kerl M.
        • Hunold P.
        • Jacobi V.
        • Bruder R.
        • Schweikard A.
        • Rades D.
        Treatment planning considerations for robotic guided cardiac radiosurgery for atrial fibrillation.
        Cureus. 2016; 8
        • van der Merwe D.
        • Van Dyk J.
        • Healy B.
        • Zubizarreta E.
        • Izewska J.
        • Mijnheer B.
        • et al.
        Accuracy requirements and uncertainties in radiotherapy: a report of the International Atomic Energy Agency.
        Acta Oncol. 2017; 56: 1-6
        • Minn A.Y.
        • Schellenberg D.
        • Maxim P.
        • Suh Y.
        • McKenna S.
        • Cox B.
        • Dieterich S.
        • Xing L.
        • Graves E.
        • Goodman K.A.
        • Chang D.
        • Koong A.C.
        Pancreatic tumor motion on a single planning 4D-CT does not correlate with intrafraction tumor motion during treatment.
        Am J Clin Oncol. 2009;
      1. Mu Z, Fu D, Kuduvally G. Presented at the conference on computer vision and pattern recognition workshop; 2006 [unpublished].

        • Schweikard A.
        • Shiomi H.
        • Adler J.
        Respiration tracking in radiosurgery.
        Med Phys. 2004; 31: 2738-2741
        • Kitamura K.
        • Shirato H.
        • Shimizu S.
        • Shinohara N.
        • Harabayashi T.
        • Shimizu T.
        • et al.
        Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT).
        Radiother Oncol. 2002; 62: 275-281
        • Teh B.S.
        • Paulino A.C.
        • Lu H.H.
        • Chiu J.K.
        • Richardson S.
        • Chiang S.
        • et al.
        Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites.
        Technol Cancer Res Treat. 2007; 6: 347-354
        • Wiersma R.
        • Mao W.
        • Xing L.
        Combined kV and MV imaging for real-time tracking of implanted fiducial markers.
        Med Phys. 2008; 35: 1191-1198
        • Cho B.
        • Poulsen P.R.
        • Sloutsky A.
        • Sawant A.
        • Keall P.J.
        First demonstration of combined kV/MV image-guided real-time dynamic multileaf-collimator target tracking.
        Int J Radiat Oncol Biol Phys. 2009; 74: 859-867
        • Ding G.X.
        • Alaei P.
        • Curran B.
        • Flynn R.
        • Gossman M.
        • Mackie T.R.
        • Miften M.
        • Morin R.
        • Xu X.G.
        • Zhu T.C.
        Image guidance doses delivered during radiotherapy: quantification, management, and reduction: report of the AAPM therapy physics committee task group 180.
        Med Phys. 2018;
        • Juneja P.
        • Caillet V.
        • Shaw T.
        • Martland J.
        • Booth J.T.
        Kilovoltage intrafraction monitoring for real-time image guided adaptive radiotherapy reduces total dose for lung SABR.
        Radiother Oncol. 2016; 121: 15-18
        • Ng J.A.
        • Booth J.T.
        • Poulsen P.R.
        • Fledelius W.
        • Worm E.S.
        • Eade T.
        • et al.
        Kilovoltage intrafraction monitoring for prostate intensity modulated arctherapy: first clinical results.
        Int J Radiat Oncol Biol Phys. 2012; 84: e655-e661
        • Rubin J.M.
        • Feng M.
        • Hadley S.W.
        • Fowlkes J.B.
        • Hamilton J.D.
        Potential use of ultrasound speckle tracking for motion management during radiotherapy.
        J Ultrasound Med. 2012; 31: 469-481
        • Xu Q.
        • Hamilton R.J.
        A novel respiratory detection method based on automated analysis of ultrasound diaphragm video.
        Med Phys. 2006; 33: 916-921
        • Ipsen S.
        • Bruder R.
        • O’Brien R.
        • Keall P.J.
        • Schweikard A.
        • Poulsen P.R.
        Online 4D ultrasound guidance for real-time motion compensation by MLC tracking.
        Med Phys. 2016; 43: 5695-5704
      2. ICRU, Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT), ICRU report 83; 2010. p. 27–40.

        • Colvill E.
        • Booth J.
        • Nill S.
        • Fast M.
        • Bedford J.
        • Oelfke U.
        • et al.
        A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking.
        Radiother Oncol. 2016; 119: 159-165
        • Keall P.J.
        • Mageras G.S.
        • Balter J.M.
        • Emery R.S.
        • Forster K.M.
        • Jiang S.B.
        • et al.
        The management of respiratory motion in radiation oncology report of AAPM Task Group 76.
        Med Phys. 2006; 33: 3874-3900
        • Lax I.
        • Blomgren H.
        • Näslund I.
        • Svanström R.
        Stereotactic radiotherapy of malignancies in the abdomen: methodological aspects.
        Acta Oncol. 1994; 33: 677-683
      3. Timmerman RD, Forster KM, Cho LC. Presented at the seminars in radiation oncology; 2005 (unpublished).

        • Wong V.Y.
        • Tung S.Y.
        • Ng A.W.
        • Li F.A.
        • Leung J.O.
        Real-time monitoring and control on deep inspiration breath-hold for lung cancer radiotherapy—combination of ABC and external marker tracking.
        Med Phys. 2010; 37: 4673-4683
        • Santoro J.P.
        • Yorke E.
        • Goodman K.A.
        • Mageras G.S.
        From phase-based to displacement-based gating: a software tool to facilitate respiration-gated radiation treatment.
        J Appl Clin Med Phys/Am College Med Phys. 2009; 10: 2982
        • Pollock S.
        • Keall R.
        • Keall P.
        Breathing guidance in radiation oncology and radiology: a systematic review of patient and healthy volunteer studies.
        Med Phys. 2015; 42: 5490-5509
        • Adler Jr., J.R.
        • Chang S.D.
        • Murphy M.J.
        • Doty J.
        • Geis P.
        • Hancock S.L.
        The Cyberknife: a frameless robotic system for radiosurgery.
        Stereotact Funct Neurosurg. 1997; 69: 124-128
        • Wong K.H.
        • Dieterich S.
        • Tang J.
        • Cleary K.
        Quantitative measurement of CyberKnife robotic arm steering.
        Technol Cancer Res Treat. 2007; 6: 589-594
        • Hoogeman M.
        • Prevost J.B.
        • Nuyttens J.
        • Poll J.
        • Levendag P.
        • Heijmen B.
        Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by analysis of log files.
        Int J Radiat Oncol Biol Phys. 2009; 74: 297-303
        • Kamino Y.
        • Miura S.
        • Kokubo M.
        • Yamashita I.
        • Hirai E.
        • Hiraoka M.
        • et al.
        Development of an ultrasmall C-band linear accelerator guide for a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head.
        Med Phys. 2007; 34: 1797-1808
        • Depuydt T.
        • Verellen D.
        • Haas O.
        • Gevaert T.
        • Linthout N.
        • Duchateau M.
        • et al.
        Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.
        Radiother Oncol. 2011; 98: 365-372
        • Keall P.
        • Kini V.
        • Vedam S.
        • Mohan R.
        Motion adaptive X-ray therapy: a feasibility study.
        Phys Med Biol. 2001; 46: 1
        • Bedford J.L.
        • Fast M.F.
        • Nill S.
        • McDonald F.M.
        • Ahmed M.
        • Hansen V.N.
        • et al.
        Effect of MLC tracking latency on conformal volumetric modulated arc therapy (VMAT) plans in 4D stereotactic lung treatment.
        Radiother Oncol. 2015; 117: 491-495
        • Poulsen P.R.
        • Fledelius W.
        • Cho B.
        • Keall P.
        Image-based dynamic multileaf collimator tracking of moving targets during intensity-modulated arc therapy.
        Int J Radiat Oncol Biol Phys. 2012; 83: e265-e271
        • Pommer T.
        • Falk M.
        • Poulsen P.R.
        • Keall P.J.
        • O’Brien R.T.
        • af Rosenschöld P.M.
        The impact of leaf width and plan complexity on DMLC tracking of prostate intensity modulated arc therapy.
        Med Phys. 2013; 40111717
        • Booth J.T.
        • Caillet V.
        • Hardcastle N.
        • O'Brien R.
        • Szymura K.
        • Crasta C.
        • et al.
        The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.
        Radiother Oncol. 2016; 121: 19-25
        • Fast M.F.
        • Nill S.
        • Bedford J.L.
        • Oelfke U.
        Dynamic tumor tracking using the Elekta Agility MLC.
        Med Phys. 2014; 41111719
        • Ge Y.
        • O’Brien R.T.
        • Shieh C.C.
        • Booth J.T.
        • Keall P.J.
        Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator.
        Med Phys. 2014; 41
        • Kamerling C.P.
        • Fast M.F.
        • Ziegenhein P.
        • Menten M.J.
        • Nill S.
        • Oelfke U.
        Real-time 4D dose reconstruction for tracked dynamic MLC deliveries for lung SBRT.
        Med Phys. 2016; 43: 6072
        • D'Souza W.D.
        • Naqvi S.A.
        • Yu C.X.
        Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study.
        Phys Med Biol. 2005; 50: 4021-4033
        • Ehrbar S.
        • Schmid S.
        • Johl A.
        • Klock S.
        • Guckenberger M.
        • Riesterer O.
        • et al.
        Validation of dynamic treatment-couch tracking for prostate SBRT.
        Med Phys. 2017;
        • Hansen R.
        • Ravkilde T.
        • Worm E.S.
        • Toftegaard J.
        • Grau C.
        • Macek K.
        • et al.
        Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator.
        Med Phys. 2016; 43: 2387-2398
        • Ehrbar S.
        • Perrin R.
        • Peroni M.
        • Bernatowicz K.
        • Parkel T.
        • Pytko I.
        • et al.
        Respiratory motion-management in stereotactic body radiation therapy for lung cancer–a dosimetric comparison in an anthropomorphic lung phantom (LuCa).
        Radiother Oncol. 2016; 121: 328-334
        • Raaijmakers A.J.
        • Raaymakers B.W.
        • Lagendijk J.J.
        Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.
        Phys Med Biol. 2008; 53: 909-923
        • Raaymakers B.W.
        • Lagendijk J.J.W.
        • Overweg J.
        • Kok J.G.M.
        • Raaijmakers A.J.E.
        • Kerkhof E.M.
        • et al.
        Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept.
        Phys Med Biol. 2009; 54: N229-N237
        • Fallone B.G.
        The rotating biplanar linac-magnetic resonance imaging system.
        Semin Radiat Oncol. 2014; 24: 200-202
        • Keall P.J.
        • Barton M.
        • Crozier S.
        The Australian magnetic resonance imaging-linac program.
        Semin Radiat Oncol. 2014; 24: 203-206
        • Mutic S.
        • Dempsey J.F.
        The ViewRay system: magnetic resonance-guided and controlled radiotherapy.
        Semin Radiat Oncol. 2014; 24: 196-199
        • Fischer-Valuck B.W.
        • Henke L.
        • Green O.
        • Kashani R.
        • Acharya S.
        • Bradley J.
        • Robinson C.
        • Thomas M.
        • Zoberi I.
        • Thorstad W.
        • Gay H.
        • Huang J.
        • Roach M.
        • Rodriguez V.
        • Santanam L.
        • Li H.
        • Contreras J.
        • Mazur T.
        • Hallahan D.
        • Olsen J.
        • Parikh P.
        • Mutic S.
        • Michalski J.
        Two-and-a-half year clinical experience with the world's first magnetic resonance image-guided radiation therapy system.
        Adv Radiat Oncol. 2017; (Accepted for Publication)
        • Henke L.
        • Kashani R.
        • Yang D.
        • Zhao T.
        • Green O.
        • Olsen L.
        • et al.
        Simulated online adaptive magnetic resonance-guided stereotactic body radiation therapy for the treatment of oligometastatic disease of the abdomen and central thorax: characterization of potential advantages.
        Int J Radiat Oncol Biol Phys. 2016; 96: 1078-1086
        • Acharya S.
        • Fischer-Valuck B.W.
        • Mazur T.R.
        • Curcuru A.
        • Sona K.
        • Kashani R.
        • et al.
        Magnetic resonance image guided radiation therapy for external beam accelerated partial-breast irradiation: evaluation of delivered dose and intrafractional cavity motion.
        Int J Radiat Oncol Biol Phys. 2016; 96: 785-792
        • Raaymakers B.
        • Jürgenliemk-Schulz I.
        • Bol G.
        • Glitzner M.
        • Kotte A.
        • van Asselen B.
        • de Boer J.
        • Bluemink J.
        • Hackett S.
        • Moerland M.J.P.i.M.
        First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment.
        Phys Med Biol. 2017; 62 (L41)
        • Hu Y.
        • Rankine L.
        • Green O.L.
        • Kashani R.
        • Li H.H.
        • Li H.
        • et al.
        Characterization of the onboard imaging unit for the first clinical magnetic resonance image guided radiation therapy system.
        Med Phys. 2015; 42: 5828-5837
        • Acharya S.
        • Fischer-Valuck B.W.
        • Kashani R.
        • Parikh P.
        • Yang D.
        • Zhao T.
        • et al.
        Online magnetic resonance image guided adaptive radiation therapy: first clinical applications.
        Int J Radiat Oncol Biol Phys. 2016; 94: 394-403
        • Tari S.Y.
        • Wachowicz K.
        • Fallone B.G.J.P.i.M.
        A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept.
        Phys Med Biol. 2017; 62 (N147)
        • Bieri O.
        • Scheffler K.
        Fundamentals of balanced steady state free precession MRI.
        J Magn Reson Imag: JMRI. 2013; 38: 2-11
        • Huang L.
        • Park K.
        • Boike T.
        • Lee P.
        • Papiez L.
        • Solberg T.
        • et al.
        A study on the dosimetric accuracy of treatment planning for stereotactic body radiation therapy of lung cancer using average and maximum intensity projection images.
        Radiother Oncol. 2010; 96: 48-54
        • Glide-Hurst C.K.
        • Kim J.P.
        • To D.
        • Hu Y.
        • Kadbi M.
        • Nielsen T.
        • et al.
        Four dimensional magnetic resonance imaging optimization and implementation for magnetic resonance imaging simulation.
        Pract Radiat Oncol. 2015; 5: 433-442
        • Mutic S.
        • Low D.
        • Chmielewski T.
        • Fought G.
        • Gerganov G.
        • Hernandez M.
        • et al.
        The design and implementation of a novel compact linear accelerator-based magnetic resonance imaging-guided radiation therapy (MR-IGRT) system.
        Int J Radiat Oncol. 2016; 96 (E641–E641)
        • Fischer-Valuck B.W.
        • Chundury A.
        • Mazur T.R.
        • Green O.L.
        • Li H.
        • Mutic S.
        • et al.
        Treatment of gastric MALT lymphoma utilizing a magnetic resonance image guided radiation therapy (MR-IGRT) system: evaluation of interfractional target motion.
        Int J Radiat Oncol. 2016; 96 (S164–S164)
        • Fischer-Valuck B.W.
        • Green O.
        • Mazur T.
        • Li H.
        • Chundury A.
        • Rao Y.J.
        • et al.
        Magnetic resonance image guided radiation therapy for primary splenic diffuse large B-cell lymphoma: a teaching case.
        Pract Radiat Oncol. 2017; 7: e23-e26
        • Kubo H.D.
        • Hill B.C.
        Respiration gated radiotherapy treatment: a technical study.
        Phys Med Biol. 1996; 41: 83
        • Fan Q.
        • Nanduri A.
        • Mazin S.
        • Zhu L.
        Emission guided radiation therapy for lung and prostate cancers: a feasibility study on a digital patient.
        Med Phys. 2012; 39: 7140-7152