Advertisement

Dosimetric impact of Acuros XB dose-to-water and dose-to-medium reporting modes on VMAT planning for head and neck cancer

      Highlights

      • AAA overestimates PTV and OAR dose-volume parameters compared to AXB Dm in H&N VMAT.
      • No systematic trend is observed in the differences between AAA and AXB Dw.
      • All dose-volume parameters are significantly higher for AXB Dw versus AXB Dm.
      • The largest differences are found –for the cochleas and the mandible.
      • Inter-patient variability of differences is greater when switching from AAA to AXB Dw than to AXB Dm.

      Abstract

      Purpose

      To assess the dosimetric impact of switching from the Analytical Anisotropic Algorithm (AAA) to Acuros XB (AXB) for both dose-to-medium (Dm) and dose-to-water (Dw) in VMAT for H&N patients. To study whether it should be linked to a change in the dose prescriptions to the PTVs and in the constraints to the OARs.

      Methods

      110H&N patients treated with VMAT were included. Calculations were performed with AAA and AXB. PTV54, PTV60, PTV70, spinal cord, brainstem, brain, larynx, oral cavity, cochleas, parotid glands and mandible were delineated. Clinically-relevant dose-volume parameters were compared. Paired t-tests were used to analyze the differences in mean values. The Pitman-Morgan dispersion test was computed to evaluate inter-patient variability of these differences.

      Results

      AAA overestimated all dose-volume parameters compared to AXB Dm (0.2 Gy to 2.4 Gy). No systematic trend was observed in the differences between AAA and AXB Dw (-5.3 Gy to 0.6 Gy). Dose-volume parameters were significantly higher for AXB Dw compared to AXB Dm (0.1 Gy to 6.6 Gy). In all cases, the largest absolute differences (4%–14%) were found for maximum absorbed doses to the cochleas and the mandible. The number of parameters with significant inter-patient variability was greater when switching from AAA to AXB Dw than from AAA to AXB Dm.

      Conclusions

      There are important differences between AXB and AAA in VMAT planning for H&N cancer. The systematic differences and their inter-patient variability identified may help to facilitate decision-making about the dose prescriptions to the PTVs and the constraints to the OAR.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Macchia G.
        • Deodato F.
        • Cilla S.
        • Cammelli S.
        • Guido A.
        • Ferioli M.
        • et al.
        Volumetric modulated arc therapy for treatment of solid tumors: Current insights.
        Onco Targets Ther. 2017; 10: 3755-3772https://doi.org/10.2147/OTT.S113119
        • Vassiliev O.N.
        • Wareing T.A.
        • McGhee J.
        • Failla G.
        • Salehpour M.R.
        • Mourtada F.
        Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams.
        Phys Med Biol. 2010; 55: 581-598https://doi.org/10.1088/0031-9155/55/3/002
        • Chetty I.J.
        • Curran B.
        • Cygler J.E.
        • DeMarco J.J.
        • Ezzell G.
        • Faddegon B.A.
        • et al.
        Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning.
        Med Phys. 2007; 34: 4818-4853https://doi.org/10.1118/1.2795842
        • Fogliata A.
        • Nicolini G.
        • Clivio A.
        • Vanetti E.
        • Mancosu P.
        • Cozzi L.
        Dosimetric validation of the Acuros XB advanced dose calculation algorithm: fundamental characterization in water.
        Phys Med Biol. 2011; 56: 1879-1904https://doi.org/10.1088/0031-9155/56/6/022
        • Fogliata A.
        • Nicolini G.
        • Clivio A.
        • Vanetti E.
        • Cozzi L.
        Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media.
        Radiat Oncol. 2011; 6: 82https://doi.org/10.1186/1748-717X-6-82
        • Bush K.
        • Gagne I.M.
        • Zavgorodni S.
        • Ansbacher W.
        • Beckham W.
        Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations.
        Med Phys. 2011; 38: 2208-2221https://doi.org/10.1118/1.3567146
        • Han T.
        • Mikell J.
        • Salehpour M.
        • Mourtada F.
        MO-F-BRB-02: dosimetric comparison of Acuros XB deterministic radiation transport method with monte carlo and model-based convolution methods in heterogeneous media.
        Med Phys. 2011; 38: 3722https://doi.org/10.1118/1.3613003
        • Han T.
        • Mourtada F.
        • Kisling K.
        • Mikell J.
        • Followill D.
        • Howell R.
        Experimental validation of deterministic Acuros XB algorithm for IMRT and VMAT dose calculations with the Radiological Physics Center’s head and neck phantom.
        Med Phys. 2012; 39: 2193-2202https://doi.org/10.1118/1.3692180
        • Kan M.W.K.
        • Leung L.H.T.
        • Yu P.K.N.
        Verification and dosimetric impact of Acuros XB algorithm on intensity modulated stereotactic radiotherapy for locally persistent nasopharyngeal carcinoma.
        Med Phys. 2012; 39: 4705-4714https://doi.org/10.1118/1.4736819
        • Kan M.W.K.
        • Leung L.H.T.
        • So R.W.K.
        • Yu P.K.N.
        Experimental verification of the Acuros XB and AAA dose calculation adjacent to heterogeneous media for IMRT and RapidArc of nasopharygeal carcinoma.
        Med Phys. 2013; 40: 1-19https://doi.org/10.1118/1.4792308
      1. Lloyd SAM, Ansbacher W. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities 2013; 011707: 3–7. doi: 10.1118/1.4769419.

        • Fogliata A.
        • Nicolini G.
        • Clivio A.
        • Vanetti E.
        • Cozzi L.
        Critical appraisal of acuros XB and anisotropic analytic algorithm dose calculation in advanced non-small-cell lung cancer treatments.
        Int J Radiat Oncol Biol Phys. 2012; 83: 1587-1595https://doi.org/10.1016/j.ijrobp.2011.10.078
        • Kroon P.S.
        • Hol S.
        • Essers M.
        Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans.
        Radiat Oncol. 2013; 8: 1https://doi.org/10.1186/1748-717X-8-149
        • Yan C.
        • Combine A.G.
        • Bednarz G.
        • Lalonde R.J.
        • Hu B.
        • Dickens K.
        • et al.
        Clinical implementation and evaluation of the Acuros dose calculation algorithm.
        J Appl Clin Med Phys. 2017; 18: 195-209https://doi.org/10.1002/acm2.12149
        • Tillikainen L.
        • Helminen H.
        • Torsti T.
        • Siljamäki S.
        • Alakuijala J.
        • Pyyry J.
        • et al.
        A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media.
        Phys Med Biol. 2008; 53: 3821-3839https://doi.org/10.1088/0031-9155/53/14/008
        • Tillikainen L.
        • Siljamäki S.
        • Helminen H.
        • Alakuijala J.
        • Pyyry J.
        Determination of parameters for a multiple-source model of megavoltage photon beams using optimization methods.
        Phys Med Biol. 2007; 52: 1441-1467https://doi.org/10.1088/0031-9155/52/5/015
        • Ma C.M.
        • Li J.
        Dose specification for radiation therapy: dose to water or dose to medium?.
        Phys Med Biol. 2011; 56: 3073-3089https://doi.org/10.1088/0031-9155/56/10/012
        • Andreo P.
        Dose to “water-like” media or dose to tissue in MV photons radiotherapy treatment planning: Still a matter of debate.
        Phys Med Biol. 2015; 60: 309-337https://doi.org/10.1088/0031-9155/60/1/309
        • Kan M.W.K.
        • Leung L.H.T.
        • Yu P.K.N.
        Dosimetric impact of using the acuros XB algorithm for intensity modulated radiation therapy and rapidarc planning in nasopharyngeal carcinomas.
        Int J Radiat Oncol Biol Phys. 2013; 85: e73-e80https://doi.org/10.1016/j.ijrobp.2012.08.031
        • Hirata K.
        • Nakamura M.
        • Yoshimura M.
        • Mukumoto N.
        • Nakata M.
        • Ito H.
        • et al.
        Dosimetric evaluation of the Acuros XB algorithm for a 4 MV photon beam in head and neck intensity-modulated radiation therapy.
        J Appl Clin Med Phys. 2015; 16: 5222https://doi.org/10.1120/jacmp.v16i4.5222
        • Kathirvel M.
        • Subramanian S.
        • Clivio A.
        • Arun G.
        • Fogliata A.
        • Nicolini G.
        • et al.
        Critical appraisal of the accuracy of Acuros-XB and Anisotropic Analytical Algorithm compared to measurement and calculations with the compass system in the delivery of RapidArc clinical plans.
        Radiat Oncol. 2013; 8: 1-9https://doi.org/10.1186/1748-717X-8-140
        • Zifodya J.M.
        • Challens C.H.C.
        • Hsieh W.L.
        From AAA to Acuros XB-clinical implications of selecting either Acuros XB dose-to-water or dose-to-medium.
        Australas Phys Eng Sci Med. 2016; 39: 431-439https://doi.org/10.1007/s13246-016-0436-z
      2. Varian Medical Systems. Eclipse algorithms reference guide for Eclipse version 10.0. B502679R01B. Palo Alto, CA: Varian Medical Systems; 2010. n.d.

      3. Varian Medical Systems. Eclipse algorithms reference guide for Eclipse version 11.0. B503486R01B. Palo Alto, CA: Varian Medical Systems; 2011. n.d.

        • Vorwerk H.
        • Hess C.F.
        Guidelines for delineation of lymphatic clinical target volumes for high conformal radiotherapy: head and neck region.
        Radiat Oncol. 2011; 6: 97https://doi.org/10.1186/1748-717X-6-97
        • Setton J.
        • Caria N.
        • Romanyshyn J.
        • Koutcher L.
        • Wolden S.L.
        • Zelefsky M.J.
        • et al.
        Intensity-modulated radiotherapy in the treatment of oropharyngeal cancer: an update of the memorial sloan-kettering cancer center experience.
        Int J Radiat Oncol Biol Phys. 2012; 82: 291-298https://doi.org/10.1016/j.ijrobp.2010.10.041
        • Bedi M.
        • Firat S.
        • Semenenko V.A.
        • Schultz C.
        • Tripp P.
        • Byhardt R.
        • et al.
        Elective lymph node irradiation with intensity-modulated radiotherapy: Is conventional dose fractionation necessary?.
        Int J Radiat Oncol Biol Phys. 2012; 83https://doi.org/10.1016/j.ijrobp.2011.12.016
        • Grégoire V.
        • Ang K.
        • Budach W.
        • Grau C.
        • Hamoir M.
        • Langendijk J.A.
        • et al.
        Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines.
        Radiother Oncol. 2014; 110: 172-181https://doi.org/10.1016/j.radonc.2013.10.010
        • Brouwer C.L.
        • Steenbakkers R.J.H.M.
        • Bourhis J.
        • Budach W.
        • Grau C.
        • Grégoire V.
        • et al.
        CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines.
        Radiother Oncol. 2015; 117: 83-90https://doi.org/10.1016/j.radonc.2015.07.041
      4. ICRU. ICRU 83 Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). vol. 10. 2010. doi: 10.1093/jicru/ndq025.

        • Bentzen S.M.
        • Constine L.S.
        • Deasy J.O.
        • Eisbruch A.
        • Jackson A.
        • Marks L.B.
        • et al.
        Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues.
        Int J Radiat Oncol Biol Phys. 2010; 76: S3-S9https://doi.org/10.1016/j.ijrobp.2009.09.040
        • Katsuta Y.
        • Kadoya N.
        • Fujita Y.
        • Shimizu E.
        • Matsunaga K.
        • Matsushita H.
        • et al.
        Clinical impact of dosimetric changes for volumetric modulated arc therapy in log file-based patient dose calculations.
        Phys Medica. 2017; 42: 1-6https://doi.org/10.1016/j.ejmp.2017.08.004
        • Cilla S.
        • Meluccio D.
        • Fidanzio A.
        • Azario L.
        • Ianiro A.
        • Macchia G.
        • et al.
        Initial clinical experience with Epid-based in-vivo dosimetry for VMAT treatments of head-and-neck tumors.
        Phys Medica. 2016; 32: 52-58https://doi.org/10.1016/j.ejmp.2015.09.007
        • Branchini M.
        • Fiorino C.
        • Dell’Oca I.
        • Belli M.L.
        • Perna L.
        • Di Muzio N.
        • et al.
        Validation of a method for “dose of the day” calculation in head-neck tomotherapy by using planning ct-to-MVCT deformable image registration.
        Phys Medica. 2017; https://doi.org/10.1016/j.ejmp.2017.05.070
        • Huang B.
        • Wu L.
        • Lin P.
        • Chen C.
        Dose calculation of Acuros XB and Anisotropic Analytical Algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size.
        Radiat Oncol. 2015; 10: 4-11https://doi.org/10.1186/s13014-015-0357-0