Advertisement
Original paper| Volume 56, P25-33, December 2018

CyberKnife MLC-based treatment planning for abdominal and pelvic SBRT: Analysis of multiple dosimetric parameters, overall scoring index and clinical scoring

      Highlights

      • Comparing Iris and MLC plan quality for 56 CyberKnife abdominal and prostate SBRT cases.
      • Comparison based on a overall mathematical scoring index and on clinical scoring.
      • Iris and MLC comparison was not straightforward when based on multiple parameters.
      • Mathematical and clinical scoring proved essential to evaluate MLC plans advantages.
      • Time reduction achievable by MLC is highly variable among different published studies.

      Abstract

      Purpose

      This study evaluated the plan quality of CyberKnife MLC-based treatment planning in comparison to the Iris collimator for abdominal and pelvic SBRT. Multiple dosimetric parameters were considered together with a global scoring index validated by clinical scoring.

      Methods and materials

      Iris and MLC plans were created for 28 liver, 15 pancreas and 13 prostate cases including a wide range of PTV sizes (24–643 cm3). Plans were compared in terms of coverage, conformity (nCI), dose gradient (R50%), homogeneity (HI), OAR doses, PTV gEUD, MU, treatment time both estimated by TPS (tTPS) and measured. A global plan quality score index was calculated for IRIS and MLC solutions and validated by a clinical score given independently by two observers.

      Results

      Compared to Iris, MLC achieved equivalent coverage and conformity without compromising OAR sparing and improving R50% (p < 0.001). MLC gEUD was slightly lower than Iris (p < 0.05) for abdominal cases. MLC reduced significantly MU (−15%) and tTPS (−22%). Time reduction was partially lost when measured. The global score index was significantly higher for MLC solutions which were selected in 73% and 64% of cases respectively by the first and second observer.

      Conclusion

      Iris and MLC comparison was not straightforward when based on multiple dosimetric parameters. The use of a mathematical overall score index integrated with a clinical scoring was essential to confirm MLC plans advantages over Iris solutions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kilby W.
        • Dooley J.R.
        • Kuduvalli G.
        • Sayeh S.
        • Maurer C.R.
        The CyberKnife® robotic radiosurgery system in 2010.
        Technol Cancer Res Treat. 2010; 9: 433-452https://doi.org/10.1177/153303461000900502
        • Marino C.
        • Villaggi E.
        • Maggi G.
        • et al.
        A feasibility dosimetric study on prostate cancer: are we ready for a multicenter clinical trial on SBRT?.
        Strahlenther Onkol. 2015; 191: 573-581
        • Henderson D.R.
        • Tree A.C.
        • van As N.J.
        Stereotactic body radiotherapy for prostate cancer.
        Clin Oncol. 2015; 27: 270-279https://doi.org/10.1016/j.clon.2015.01.011
        • King C.R.
        • Freeman D.K.I.
        Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials.
        Radiother Oncol. 2013; 109: 217-221
        • Lanciano R.
        • Lamond J.
        • Yang J.
        • Feng J.
        • Arrigo S.
        • Good M.
        • et al.
        Stereotactic body radiation therapy for patients with heavily pretreated liver metastases and liver tumors.
        Front Oncol. 2012; 2: 1-8https://doi.org/10.3389/fonc.2012.00023
        • Mahadevan A.
        • Blanck O.
        • Lanciano R.
        • et al.
        Stereotactic Body Radiotherapy (SBRT) for liver metastasis – clinical outcomes from the international multi-institutional RSSearch® Patient Registry.
        Radiat Oncol. 2018; 13: 26
        • Lischalk J.W.
        • Burke A.
        • Chew J.
        • Elledge C.
        • Gurka M.
        • Marshall J.
        • et al.
        Five-fraction stereotactic body radiation therapy (SBRT) and chemotherapy for the local management of metastatic pancreatic cancer.
        J Gastrointest Cancer. 2018; 49: 116-123https://doi.org/10.1007/s12029-016-9909-2
        • Dagoglu N.
        • Callery M.
        • Moser J.
        • et al.
        Stereotactic body radiotherapy (SBRT) reirradiation for recurrent pancreas cancer.
        J Cancer. 2016; 7: 283-288
        • Yoon K.
        • Kwak J.
        • Cho B.
        • Park J.
        • Yoon S.M.
        • Lee S.
        • et al.
        Gated volumetric-modulated arc therapy vs. tumor-tracking cyberknife radiotherapy as stereotactic body radiotherapy for hepatocellular carcinoma: a dosimetric comparison study focused on the impact of respiratory motion managements.
        PLoS One. 2016; 11 (e0166927)https://doi.org/10.1371/journal.pone.0166927
        • Karava K.
        • Ehrbar S.
        • Riesterer O.
        • Roesch J.
        • Glatz S.
        • Klöck S.
        • et al.
        Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.
        Radiat Oncol. 2017; 12: 1-9https://doi.org/10.1186/s13014-017-0906-9
        • Paik E.K.
        • Kim M.
        • Choi C.W.
        • Il Jang W
        • Lee S.H.
        • Choi S.H.
        • et al.
        Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma.
        Radiat Oncol J. 2015; 33: 233-241https://doi.org/10.3857/roj.2015.33.3.233
        • Seuntjens J.
        • Lartigau E.
        • Cora S.
        • Vanderbilt G.
        • Goetsch S.
        • Nuyttens J.
        • et al.
        Prescribing, recording, and reporting of stereotactic treatments with small photon beams.
        J ICRU. 2014; 14: 1-160https://doi.org/10.1093/jicru/ndx009
        • Schweikard A.
        • Schlaefer A.A.J.J.
        Resampling: an optimization method for inverse planning in robotic radiosurgery.
        Med Phys. 2006; 33: 4005-4011
        • Echner G.G.
        • Kilby W.
        • Lee M.
        • Earnst E.
        • Sayeh S.
        • Schlaefer A.
        • et al.
        The design, physical properties and clinical utility of an iris collimator for robotic radiosurgery.
        Phys Med Biol. 2009; 54: 5359-5380https://doi.org/10.1088/0031-9155/54/18/001
        • McGuinness C.M.
        • Gottschalk A.R.
        • Lessard E.
        • Nakamura J.L.
        • Pinnaduwage D.
        • Pouliot J.
        • et al.
        Investigating the clinical advantages of a robotic linac equipped with a multileaf collimator in the treatment of brain and prostate cancer patients.
        J Appl Clin Med Phys. 2015; 16: 284-295https://doi.org/10.1120/jacmp.v16i5.5502
        • Van De Water S.
        • Hoogeman M.S.
        • Breedveld S.
        • Nuyttens J.J.M.E.
        • Schaart D.R.
        • Heijmen B.J.M.
        Variable circular collimator in robotic radiosurgery: a time-efficient alternative to a mini-multileaf collimator?.
        Int J Radiat Oncol Biol Phys. 2011; 81: 863-870https://doi.org/10.1016/j.ijrobp.2010.12.052
        • Kathriarachchi V.
        • Shang C.
        • Evans G.
        • Leventouri T.
        • Kalantzis G.
        Dosimetric and radiobiological comparison of CyberKnife M6 TM InCise multileaf collimator over IRIS TM variable collimator in prostate stereotactic body radiation therapy.
        J Med Phys. 2016; 41: 135https://doi.org/10.4103/0971-6203.181638
        • Tomida M.
        • Kamomae T.
        • Suzuki J.
        • Ohashi Y.
        • Itoh Y.
        • Oguchi H.
        • et al.
        Clinical usefulness of MLCs in robotic radiosurgery systems for prostate SBRT.
        J Appl Clin Med Phys. 2017; 18: 124-133https://doi.org/10.1002/acm2.12128
        • Murai T.
        • Hattori Y.
        • Sugie C.
        • Iwata H.
        • Iwabuchi M.
        • Shibamoto Y.
        Comparison of multileaf collimator and conventional circular collimator systems in Cyberknife stereotactic radiotherapy.
        J Radiat Res. 2017; 58: 693-700https://doi.org/10.1093/jrr/rrw130
        • Jin L.
        • Price R.A.
        • Wang L.
        • Meyer J.
        • Fan J.
        • Charlie Ma C.M.
        Dosimetric and delivery efficiency investigation for treating hepatic lesions with a MLC-equipped robotic radiosurgery-radiotherapy combined system.
        Med Phys. 2016; 43: 727-733https://doi.org/10.1118/1.4939259
        • Ventura T.
        • Lopes M. do C.
        • Ferreira B.C.
        • Khouri L.
        SPIDERplan: a tool to support decision-making in radiation therapy treatment plan assessment.
        Reports Pract Oncol Radiother. 2016; 21: 508-516https://doi.org/10.1016/j.rpor.2016.07.002
        • Nelms B.E.
        • Robinson G.
        • Markham J.
        • Velasco K.
        • Boyd S.
        • Narayan S.
        • et al.
        Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems.
        Pract Radiat Oncol. 2012; 2: 296-305https://doi.org/10.1016/j.prro.2011.11.012
        • Moustakis C.
        • Chan M.K.H.
        • Kim J.
        • Nilsson J.
        • Bergman A.
        • Bichay T.J.
        • et al.
        Treatment planning for spinal radiosurgery.
        Strahlenther Onkol. 2018; 194: 843-854https://doi.org/10.1007/s00066-018-1314-2
        • Blanck O.
        • Wang L.
        • Baus W.
        • et al.
        Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial.
        J Appl Clin Med Phys. 2016; 17: 313-330
        • Akpati H.
        • Kim C.
        • Kim B.
        • Park T.
        • Meek A.
        Unified dosimetry index (UDI): a figure of merit for ranking treatment plans.
        J Appl Clin Med Phys. 2008; 9: 99-108https://doi.org/10.1120/jacmp.v9i3.2803
        • Hazell I.
        • Bzdusek K.
        • Kumar P.
        • Hansen C.R.
        • Bertelsen A.
        • Eriksen J.G.
        • et al.
        Automatic planning of head and neck treatment plans.
        J Appl Clin Med Phys. 2016; 17: 272-282https://doi.org/10.1120/jacmp.v17i1.5901
        • Benedict S.H.
        • Yenice K.M.
        • Followill D.
        • Galvin J.M.
        • Hinson W.
        • Kavanagh B.
        • et al.
        Stereotactic body radiation therapy: the report of AAPM Task Group 101.
        Med Phys. 2010; 37: 4078-4101https://doi.org/10.1118/1.3438081
        • Seppenwoolde Y.
        • Wunderink W.
        • Veen S.R.W.
        • Storchi P.
        • Romero A.M.
        • Heijmen B.J.M.
        Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker–tumour distance.
        Phys Med Biol. 2011; 56: 5445-5468https://doi.org/10.1088/0031-9155/56/17/001
      1. Prostate Advances in Comparative Evidence – Full Text View – ClinicalTrials.gov n.d.

        • Asmerom G.
        • Bourne D.
        • Chappelow J.
        • Goggin L.M.
        • Heitz R.
        • Jordan P.
        • et al.
        The design and physical characterization of a multileaf collimator for robotic radiosurgery.
        Biomed Phys Eng Express. 2016; 2017003https://doi.org/10.1088/2057-1976/2/1/017003
        • Schlaefer A.
        • Schweikard A.
        Stepwise multi-criteria optimization for robotic radiosurgery.
        Med Phys. 2008; 35: 2094-2103https://doi.org/10.1118/1.2900716
        • Schmitt D.
        • El Shafie R.
        • Kluter S.
        • Arians N.
        • et al.
        Treatment planning for MLC based robotic radiosurgery for brain metastases: plan comparison with circular fields and suggestion for planning strategies.
        Curr Dir Biomed Eng. 2017; 3: 151-154
        • Fogliata A.
        • Cozzi L.
        Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case.
        Phys Med. 2017; 44: 157-162https://doi.org/10.1016/j.ejmp.2016.11.104
        • Jeleń U.
        • Söhn M.
        • Alber M.
        A finite size pencil beam for IMRT dose optimization.
        Phys Med Biol. 2005; 50: 1747-1766https://doi.org/10.1088/0031-9155/50/8/009
        • Wilcox E.E.
        • Daskalov G.M.
        • Ms H.L.
        Stereotactic radiosurgery-radiotherapy: should Monte Carlo treatment planning be used for all sites ?.
        Pract Radiat Oncol. 2011; 1: 251-260https://doi.org/10.1016/j.prro.2011.03.001
        • Gay H.A.
        • Niemierko A.
        A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy.
        Phys Med. 2007; 23: 115-125https://doi.org/10.1016/j.ejmp.2007.07.001
        • Molinelli S.
        • de Pooter J.
        • Romero A.M.
        • Wunderink W.
        • Cattaneo M.
        • Calandrino R.
        • et al.
        Simultaneous tumour dose escalation and liver sparing in Stereotactic Body Radiation Therapy (SBRT) for liver tumours due to CTV-to-PTV margin reduction.
        Radiother Oncol. 2008; 87: 432-438https://doi.org/10.1016/j.radonc.2007.11.015
        • Spalding A.C.
        • Jee K.W.
        • Vineberg K.
        • Jablonowski M.
        • Fraass B.A.
        • Pan C.C.
        • et al.
        Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions.
        Med Phys. 2007; 34: 521-529https://doi.org/10.1118/1.2426403
        • Delaby N.
        • Bellec J.
        • Bouvier J.
        • Jouyaux F.
        • Perdrieux M.
        • Castelli J.
        • et al.
        CyberKnife® M6™: peripheral dose evaluation for brain treatments.
        Phys Med. 2017; 37: 88-96https://doi.org/10.1016/j.ejmp.2017.04.015
        • Ding C.
        • Solberg T.D.
        • Hrycushko B.
        • Xing L.
        • Heinzerling J.
        • Timmerman R.D.
        Optimization of normalized prescription isodose selection for stereotactic body radiation therapy: conventional vs robotic linac.
        Med Phys. 2013; 40051705https://doi.org/10.1118/1.4798944
        • Que J.Y.
        • Lin L.C.
        • Lin K.L.
        • Lin C.H.
        • Lin Y.W.
        • Yang C.C.
        The efficacy of stereotactic body radiation therapy on huge hepatocellular carcinoma unsuitable for other local modalities.
        Radiat Oncol. 2014; 9: 1-8https://doi.org/10.1186/1748-717X-9-120
        • Crane C.H.
        • Koay E.J.
        Solutions that enable ablative radiotherapy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance.
        Cancer. 2016; 122: 1974-1986https://doi.org/10.1002/cncr.29878
        • Bellec J.
        • Delaby N.
        • Jouyaux F.
        • Perdrieux M.
        • Bouvier J.
        • Sorel S.
        • et al.
        Plan delivery quality assurance for CyberKnife: statistical process control analysis of 350 film-based patient-specific QAs.
        Phys Med. 2017; 39: 50-58https://doi.org/10.1016/j.ejmp.2017.06.016
        • Blanck O.
        • Masi L.
        • Chan M.K.H.
        • Adamczyk S.
        • Albrecht C.
        • Damme M.
        • et al.
        High resolution ion chamber array delivery quality assurance for robotic radiosurgery: commissioning and validation.
        Phys Med. 2016; 32: 838-846https://doi.org/10.1016/j.ejmp.2016.05.060