Advertisement

A review of cone-beam CT applications for adaptive radiotherapy of prostate cancer

Published:March 13, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.02.014

      Highlights

      • Adaptive radiotherapy should include both, image-guided and dose-guided procedures.
      • Rigid registrations are accurate for adaptive procedures for prostate only region.
      • For region of prostate and seminal vesicles, non-rigid registrations are needed.
      • The quality of CBCT is one of most important variables affecting adaptation accuracy.

      Abstract

      Introduction

      The aim of this study was to systematize the information on adaptive radiotherapy based on cone-beam computed tomography (CBCT) imaging for patients with prostate cancers including the prostate gland only, or the prostate gland and seminal vesicles region.

      Material and method

      A systematic literature search was carried out using the PubMed engine, based upon the following terms: adaptive radiotherapy, intensity modulated radiotherapy, volumetric modulated arc therapy and image-guided and dose-guided radiotherapy. Overall, 58 relevant studies were included: 31 about on-line strategies of adaptation, 6 about off-line strategies, and 21 that highlighted the technical aspects of CBCT usage.

      Results

      The off-line strategies provide a statistical prediction for each individual patient for the rest of treatment. The on-line strategies aim to resolve the potential disagreements between a planned and delivered dose directly before the specific fraction. Both strategies need information about the movements of the irradiated region relative to the target from treatment planning and the dose delivered relative to the planned dose. Quality of CBCT is very important for the accuracy of the adaptation procedures. While the errors caused by the insufficient quality of anatomy visualisation with CBCT are currently minimized, there are still problems with the proper dose computation. The most accurate methods are able to minimize the calculation error to 3%.

      Conclusion

      CBCT plays a significant role in each step of adaptive radiation therapy of prostate cancers, starting from registration procedures through setting an appropriate CTV-to-PTV margin to fraction dose recalculations, and its cumulation/monitoring relative to the planned dose.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Milecki P.
        • Piotrowski T.
        • Dymnicka M.
        The comparison of radiotherapy techniques for treatment of the prostate cancer: the three-field vs. the four-field.
        Neoplasma. 2004; 51: 64-69
        • Leszczyński W.
        • Ślosarek K.
        • Szlag M.
        Comparison of dose distribution in IMRT and RapidArc technique in prostate radiotherapy.
        Rep Pract Oncol Radiother. 2012; 17: 347-351
        • Quan E.M.
        • Li X.
        • Li Y.
        • Wang X.
        • Kudchadker R.J.
        • Johnson J.L.
        • et al.
        A comprehensive comparison of IMRT and VMAT plan quality for prostate cancer treatment.
        Int J Radiat Oncol Biol Phys. 2012; 83: 1169-1178
        • Malicki J.
        The importance of accurate treatment planning, delivery, and dose verification.
        Rep Pract Oncol Radiother. 2012; 17: 63-65
        • Jaffray D.A.
        • Siewerdsen J.H.
        Cone-beam computed tomography with a flat-panel imager: initial performance characterization.
        Med Phys. 2000; 27: 1311-1323
        • Jaffray D.
        • Kupelian P.
        • Djemil T.
        • Macklis R.M.
        Review of image-guided radiation therapy.
        Expert Rev Anticancer Ther. 2007; 7: 89-103
        • Mc Parland N.A.
        kV-Cone Beam CT as an IGRT Tool in the treatment of rarly stage prostate cancer: a literature review.
        Med Imaging Radiat Sci. 2009; 40: 9-14
        • Boda-Heggemann J.
        • Lohr F.
        • Wenz F.
        • Flentje M.
        • Guckenberger M.
        kV cone-beam CT-based IGRT.
        Strahlenther Onkol. 2011; 187: 284-291
        • Xie Y.
        • Djajaputra D.
        • King C.R.
        • Hossain S.
        • Ma L.
        • Xing L.
        Intrafractional motion of the prostate during hypofractionated radiotherapy.
        Int J Radiat Oncol Biol Phys. 2008; 72: 236-246
        • Masi L.
        • Zani M.
        • Doro R.
        • Calusi S.
        • Di Cataldo V.
        • Bonucci I.
        • et al.
        CyberKnife MLC-based treatment planning for abdominal and pelvic SBRT: analysis of multiple dosimetric parameters, overall scoring index and clinical scoring.
        Phys Med. 2018; 56: 25-33
        • van Rooijen D.C.
        • van Wieringen N.
        • Stippel G.
        • Crezee J.
        • Koning C.C.
        • Bel A.
        Dose-guided radiotherapy: potential benefit of online dose recalculation for stereotactic lung irradiation in patients with non-small-cell lung cancer.
        Int J Radiat Oncol Biol Phys. 2012; 83: 557-562
        • Pisaturo O.
        • Miéville F.
        • Tercier P.A.
        • Allal A.S.
        Transit QA – a new method for tra nsit dosimetry of Tomotherapy patients.
        Med Phys. 2018; 45: 438-447
        • Pisaturo O.
        • Miéville F.
        • Tercier P.A.
        • Allal A.S.
        An efficient procedure for tomotherapy treatment plan verification using the on-board detector.
        Phys Med Biol. 2015; 60: 1625-1639
        • Persoon L.C.
        • Podesta M.
        • Nijsten S.M.
        • Troost E.G.
        • Verhaegen F.
        Time-resolved versus integrated transit planar dosimetry for volumetric modulated arc therapy: patient-specific dose differences during treatment, a proof of principle.
        Technol Cancer Res Treat. 2016; 15: NP79-NP87
        • Martínez Ortega J.
        • Pinto Monedero M.
        • Gómez González N.
        • Tolani N.B.
        • Castro Tejero P.
        • Castanedo Álvarez M.
        • et al.
        A collapsed-cone based transit EPID dosimetry method.
        Phys Med. 2018; 46: 75-80
        • Stevens S.
        • Dvorak P.
        • Spevacek V.
        • Pilarova K.
        • Bray-Parry M.
        • Gesner J.
        • et al.
        An assessment of a 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT.
        Phys Med. 2018; 45: 25-34
        • Hofmaier J.
        • Haehnle J.
        • Kurz C.
        • Landry G.
        • Maihoefer C.
        • Schüttrumpf L.
        • et al.
        Multi-criterial patient positioning based on dose recalculation on scatter-corrected CBCT images.
        Radiother Oncol. 2017; 125: 464-469
        • Hüttenrauch P.
        • Witt M.
        • Wolff D.
        • Bosold S.
        • Engenhart-Cabillic R.
        • Sparenberg J.
        • et al.
        Target volume coverage and dose to organs at risk in prostate cancer patients. Dose calculation on daily cone-beam CT data sets.
        Strahlenther Onkol. 2014; 190: 310-316
        • Noble D.J.
        • Burnet N.G.
        The future of image-guided radiotherapy-is image everything?.
        Br J Radiol. 2018; 91: 20170894
        • Pollard J.M.
        • Wen Z.
        • Sadagopan R.
        • Wang J.
        • Ibbott G.S.
        The future of image-guided radiotherapy will be MR guided.
        Br J Radiol. 2017; 90: 20160667
        • Kamath S.
        • Song W.
        • Chvetsov A.
        • Ozawa S.
        • Lu H.
        • Samant S.
        • et al.
        An image quality comparison study between XVI and OBI CBCT systems.
        J Appl Clin Med Phys. 2011; 12: 3435
        • Chen S.
        • Quan H.
        • Qin A.
        • Yee S.
        • Yan D.
        MR image-based synthetic CT for IMRT prostate treatment planning and CBCT image-guided localization.
        J Appl Clin Med Phys. 2016; 17: 236-245
        • Chen S.
        • Qin A.
        • Zhou D.
        • Yan D.
        U-net-generated synthetic CT images for magnetic resonance imaging-only prostate intensity-modulated radiation therapy treatment planning.
        Med Phys. 2018; 45: 5659-5665
        • Feng Y.
        • Castro-Pareja C.
        • Shekhar R.
        • Yu C.
        Direct aperture deformation: an interfraction image guidance strategy.
        Med Phys. 2006; 33: 4490-4498
        • Ahunbay E.E.
        • Peng C.
        • Holmes S.
        • Godley A.
        • Lawton C.
        • Li X.A.
        Online adaptive replanning method for prostate radiotherapy.
        Int J Radiat Oncol Biol Phys. 2010; 77: 1561-1572
        • Peng C.
        • Chen G.
        • Ahunbay E.
        • Wang D.
        • Lawton C.
        • Li X.A.
        Validation of an online replanning technique for prostate adaptive radiotherapy.
        Phys Med Biol. 2011; 56: 3659-3668
        • Men C.
        • Jia X.
        • Jiang S.B.
        GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy.
        Phys Med Biol. 2010; 55: 4309-4319
        • Henderson D.R.
        • Tree A.C.
        • van As N.J.
        Stereotactic body radiotherapy for prostate cancer.
        Clin Oncol (R Coll Radiol). 2015; 27: 270-279
        • Hammoud R.
        • Patel S.H.
        • Pradhan D.
        • Kim J.
        • Guan H.
        • Li S.
        • et al.
        Examining margin reduction and its impact on dose distribution for prostate cancer patients undergoing daily cone-beam computed tomography.
        Int J Radiat Oncol Biol Phys. 2008; 71: 265-273
        • Logadottir A.
        • Korreman S.
        • Petersen P.M.
        Comparison of the accuracy and precision of prostate localization with 2D–2D and 3D images.
        Radiother Oncol. 2011; 98: 175-180
        • Adamczyk M.
        • Piotrowski T.
        • Adamiak E.
        Evaluation of combining bony anatomy and soft tissue position correction strategies for IMRT prostate cancer patients.
        Rep Pract Oncol Radiother. 2012; 17: 104-109
        • Shi W.
        • Li J.G.
        • Zlotecki R.A.
        • Yeung A.
        • Newlin H.
        • Palta J.
        • et al.
        Evaluation of kV cone-beam ct performance for prostate IGRT: a comparison of automatic grey-value alignment to implanted fiducial-marker alignment.
        Am J Clin Oncol. 2011; 34: 16-21
        • Maund I.
        • Benson R.
        • Fairfoul J.
        • Cook J.
        • Huddart R.
        • Poynter A.
        Image-guided radiotherapy of the prostate using daily CBCT: the feasibility and likely benefit of implementing a margin reduction.
        Br J Radiol. 2014; 87: 20140459
        • Letourneau D.
        • Lockman D.
        • Yan D.
        • Wong J.
        • Martinez A.
        Assessment of residual error for online cone beam CT guided treatment of prostate patients.
        Int J Radiat Oncol Biol Phys. 2004; 60: 196-197
        • Barney B.M.
        • Lee R.J.
        • Handrahan D.
        • Welsh K.T.
        • Cook J.T.
        • Sause W.T.
        Image-guided radiotherapy (IGRT) for prostate cancer comparing kV imaging of fiducial markers with cone beam computed tomography (CBCT).
        Int J Radiat Oncol Biol Phys. 2011; 80: 301-305
        • Moseley D.J.
        • White E.A.
        • Wiltshire K.L.
        • Rosewall T.
        • Sharpe M.B.
        • Siewerdsen J.H.
        • et al.
        Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate.
        Int J Radiat Oncol Biol Phys. 2007; 67: 942-953
        • Chiesa S.
        • Placidi L.
        • Azario L.
        • Mattiucci G.C.
        • Greco F.
        • Damiani A.
        • et al.
        Adaptive optimization by 6 DOF robotic couch in prostate volumetric IMRT treatment: rototranslational shift and dosimetric consequences.
        J Appl Clin Med Phys. 2015; 16: 35-45
        • Shang Q.
        • Olsen L.J.S.
        • Stephans K.
        • Tendulkar R.
        • Xia P.
        Prostate rotation detected from implanted markers can affect dose coverage and cannot be simply dismissed.
        J Appl Clin Med Phys. 2013; 14: 177-191
        • Shah A.P.
        • Kupelian P.A.
        • Willoughby T.R.
        • Meeks S.L.
        Expanding the use of realtime electromagnetic tracking in radiation oncology.
        J Appl Clin Med Phys. 2011; 12: 34-49
        • Gehrke C.
        • Oates R.W.
        • Ramachandran P.
        • Deloar H.M.
        • Gill S.
        • Kron T.
        Automatic tracking of gold seed markers from CBCT image projections in lung and prostate radiotherapy.
        Phys Med. 2015; 31: 185-191
        • Langen K.M.
        • Willoughby T.R.
        • Meeks S.L.
        • Santhanam A.
        • Cunningham A.
        • Levine L.
        • et al.
        Observations on real-time prostate gland motion using electromagnetic tracking.
        Int J Radiat Oncol Biol Phys. 2008; 71: 1084-1090
        • Oates R.
        • Gill S.
        • Foroudi F.
        • Joon M.L.
        • Schneider M.
        • Bressel M.
        • et al.
        What benefit could be derived from on-line adaptive prostate radiotherapy using rectal diameter as a predictor of motion?.
        J Med Phys. 2015; 40: 18-23
        • Oates R.W.
        • Brown A.
        • Tan A.
        • Foroudi F.
        • Joon M.L.
        • Schneider M.E.
        • et al.
        Real-time image-guided adaptive-predictive prostate radiotherapy using rectal diameter as a predictor of motion.
        Clin Oncol (R Coll Radiol). 2017; 29: 180-187
        • Collins S.D.
        • Leech M.M.
        A review of plan library approaches in adaptive radiotherapy of bladder cancer.
        Acta Oncol. 2018; 57: 566-573
        • Murphy M.J.
        Fiducial-based targeting accuracy for external-beam radiotherapy.
        Med Phys. 2002; 29: 334-344
        • Boda-Heggemann J.
        • Kohler F.
        • Wertz H.
        • Welzel G.
        • Riesenacker N.
        • Schafer J.
        • et al.
        Fiducial-based quantification of prostate tilt using cone beam computer tomography (CBCT).
        Radiother Oncol. 2007; 85: 247-250
        • Bratengeier K.
        • Polat B.
        • Gainey M.
        • Grewenig P.
        • Meyer J.
        • Flentje M.
        Is ad-hoc plan adaptation based on 2-Step IMRT feasible?.
        Radiother Oncol. 2009; 93: 266-272
        • Holubyev K.
        • Bratengeier K.
        • Gainey M.
        • Polat B.
        • Flentje M.
        Towards automated on-line adaptation of 2-Step IMRT plans: QUASIMODO phantom and prostate cancer cases.
        Rad Oncol. 2013; 8: 263
        • Charret J.
        • Salleron J.
        • Quivrin M.
        • Mazoyer F.
        • Lesueur P.
        • Martin E.
        • et al.
        Impact of rectal distension on prostate CBCT-based positioning assessed with 6 degrees-of-freedom couch.
        Pract Rad Oncol. 2018; 8: 322-328
        • Sheng Y.
        • Li T.
        • Lee W.R.
        • Yin F.
        • Wu Q.J.
        Exploring the margin recipe for online adaptive radiation therapy for intermediate-risk prostate cancer: an intrafractional seminal vesicles motion analysis.
        Int J Radiat Oncol Biol Phys. 2017; 98: 473-480
        • Boggula R.
        • Lorenz F.
        • Abo-Madyan Y.
        • Lohr F.
        • Wolff D.
        • Boda-Heggemann J.
        • et al.
        A new strategy for online adaptive prostate radiotherapy based on cone-beam CT.
        Z Med Phys. 2009; 19: 264-276
        • Wu Q.J.
        • Thongphiew D.
        • Wang Z.
        • Mathayomchan B.
        • Chankong V.
        • Yoo S.
        • et al.
        On-line re-optimization of prostate IMRT plans for adaptive radiation therapy.
        Phys Med Biol. 2008; 53: 673
        • Thongphiew D.
        • Wu Q.J.
        • Lee W.R.
        • Chankong V.
        • Yoo S.
        • McMahon R.
        • et al.
        Comparison of online IGRT techniques for prostate IMRT treatment: adaptive vs repositioning correction.
        Med Phys. 2009; 36: 1651-1662
        • Fu W.
        • Yang Y.
        • Yue N.J.
        • Heron D.E.
        • Huq M.S.
        A cone beam CT-guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment.
        Phys Med Biol. 2009; 54: 1691
        • Li T.
        • Thongphiew D.
        • Zhu X.
        • Lee W.R.
        • Vujaskovic Z.
        • Yin F.
        • et al.
        Adaptive prostate IGRT combining online re-optimization and re-positioning: a feasibility study.
        Phys Med Biol. 2011; 56: 1243
        • Qin A.
        • Sun Y.
        • Liang J.
        • Yan D.
        Evaluation of online/offline image guidance/adaptation approaches for prostate cancer radiation therapy.
        Int J Radiat Oncol Biol Phys. 2015; 91: 1026-1033
        • Crijns W.
        • Van Herck H.
        • Defraene G.
        • Van den Bergh L.
        • Slagmolen P.
        • Haustermans K.
        • et al.
        Dosimetric adaptive IMRT driven by fiducial points.
        Med Phys. 2014; 41: 061716
        • Stanley K.
        • Eade T.
        • Kneebone A.
        • Booth J.T.
        Investigation of an adaptive treatment regime for prostate radiation therapy.
        Pract Rad Oncol. 2015; 5: 23-29
        • Piotrowski T.
        • Kaczmarek K.
        • Bajon T.
        • Ryczkowski A.
        • Jodda A.
        • Kaźmierska J.
        Evaluation of image-guidance strategies for prostate cancer.
        Technol Cancer Res Treat. 2014; 13: 583-591
        • Yeung T.P.C.
        • Yartsev S.
        • Rodrigues G.
        • Bauman G.
        Evaluation ofimage-guidance strategies with helical tomotherapy for localized prostate cancer.
        J Med Imaging Radiat Oncol. 2011; 55: 220-228
        • Kukołowicz P.
        • Kukołowicz H.
        • Tyburska I.
        Dependence of the safe rectum dose on the CTV–PTV margin size and treatment technique.
        Rep Pract Oncol Radiother. 2015; 20: 198-203
        • Nijkamp J.
        • Pos F.J.
        • Nuver T.T.
        • De Jong R.
        • Remeijer P.
        • Sonke J.
        • et al.
        Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results.
        Int J Radiat Oncol Biol Phys. 2008; 70: 75-82
        • Nuver T.T.
        • Hoogeman M.S.
        • Remeijer P.
        • van Herk M.
        • Lebesque J.V.
        An adaptive off-line procedure for radiotherapy of prostate cancer.
        Int J Radiat Oncol Biol Phys. 2007; 67: 1559-1567
        • Góra J.
        • Stock M.
        • Lütgendorf-Caucig C.
        • Georg D.
        Is there an advantage in designing adapted, patient-specific PTV margins in intensity modulated proton beam therapy for prostate cancer?.
        Int J Radiat Oncol Biol Phys. 2013; 85: 881-888
        • Vanasek J.
        • Odrazka K.
        • Dolezel M.
        • Dusek L.
        • Jarkovsky J.
        • Hlavka A.
        • et al.
        Searching for an appropriate image-guided radiotherapy method in prostate cancer–implications for safety margin.
        Tumori J. 2014; 100: 518-523
        • Adamson J.
        • Wu Q.
        Prostate intrafraction motion assessed by simultaneous kV fluoroscopy at MV delivery II: adaptive strategies.
        Int J Radiat Oncol Biol Phys. 2010; 78: 1323-1330
        • Barrett J.F.
        • Keat N.
        Artifacts in CT: recognition and avoidance.
        Radiographics. 2004; 24: 1679-1691
        • Schulze R.
        • Heil U.
        • Groβ D.
        • Bruellmann D.
        • Dranischnikow E.
        • Schwanecke U.
        • et al.
        Artefacts in CBCT: a review.
        Dentomaxillofac Radiol. 2011; 40: 265-273
        • Bechara B.
        • Moore W.
        • McMahan C.
        • Noujeim M.
        Metal artefact reduction with cone beam CT: an in vitro study.
        Dentomaxillofac Radiol. 2012; 41: 248-253
        • Zhang Y.
        • Zhang L.
        • Zhu X.R.
        • Lee A.K.
        • Chambers M.
        • Dong L.
        Reducing metal artifacts in cone-beam CT images by preprocessing projection data.
        Int J Radiat Oncol Biol Phys. 2007; 67: 924-932
        • Aubin M.
        • Morin O.
        • Chen J.
        • Gillis A.
        • Pickett B.
        • Aubry J.
        • et al.
        The use of megavoltage cone-beam CT to complement CT for target definition in pelvic radiotherapy in the presence of hip replacement.
        Br J Radiol. 2006; 79: 918-921
        • Wang A.
        • Paysan P.
        • Brehm M.
        • Maslowski A.
        • Lehmann M.
        • Messmer P.
        • et al.
        Advanced scatter correction and iterative reconstruction for improved cone-beam CT imaging on the TrueBeam radiotherapy machine.
        Med Phys. 2016; 43: S3799
        • Smitsmans M.H.
        • Pos F.J.
        • de Bois J.
        • Heemsbergen W.D.
        • Sonke J.
        • Lebesque J.V.
        • et al.
        The influence of a dietary protocol on cone beam CT–guided radiotherapy for prostate cancer patients.
        Int J Radiat Oncol Biol Phys. 2008; 71: 1279-1286
        • Xia Y.
        • Maier A.
        • Dennerlein F.
        • Hornegger J.
        Truncation Correction using a 3D Filter for Cone-beam CT.
        Fully3D, Ed., Fully3D 2013. 2013; : 118-121
        • Yoo S.
        • Kim G.
        • Hammoud R.
        • Elder E.
        • Pawlicki T.
        • Guan H.
        • et al.
        A quality assurance program for the on-board.
        Med Phys. 2006; 33: 4431-4447
        • Bissonnette J.
        • Moseley D.J.
        • Jaffray D.A.
        A quality assurance program for image quality of cone-beam CT guidance in radiation therapy.
        Med Phys. 2008; 35: 1807-1815
        • Stock M.
        • Pasler M.
        • Birkfellner W.
        • Homolka P.
        • Poetter R.
        • Georg D.
        Image quality and stability of image-guided radiotherapy (IGRT) devices: a comparative study.
        Radiother Oncol. 2009; 93: 1-7
        • Lehmann J.
        • Perks J.
        • Semon S.
        • Harse R.
        • Purdy J.A.
        Commissioning experience with cone-beam computed tomography for image-guided radiation therapy.
        J Appl Clin Med Phys. 2007; 8: 21-36
        • Yoo S.
        • Yin F.
        Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning.
        Int J Radiat Oncol Biol Phys. 2006; 66: 1553-1561
        • Richter A.
        • Hu Q.
        • Steglich D.
        • Baier K.
        • Wilbert J.
        • Guckenberger M.
        • et al.
        Investigation of the usability of conebeam CT data sets for dose calculation.
        Rad Oncol. 2008; 3: 42
        • Fotina I.
        • Hopfgartner J.
        • Stock M.
        • Steininger T.
        • Lütgendorf-Caucig C.
        • Georg D.
        Feasibility of CBCT-based dose calculation: comparative analysis of HU adjustment techniques.
        Radiother Oncol. 2012; 104: 249-256
        • Alaei P.
        • Spezi E.
        Imaging dose from cone beam computed tomography in radiation therapy.
        Phys Med. 2015; 31: 647-658
        • Murphy M.J.
        • Balter J.
        • Balter S.
        • BenComo Jr, J.A.
        • Das I.J.
        • Jiang S.B.
        • et al.
        The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75.
        Med Phys. 2007; 34: 4041-4063
        • Wen N.
        • Guan H.
        • Hammoud R.
        • Pradhan D.
        • Nurushev T.
        • Li S.
        • et al.
        Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer.
        Phys Med Biol. 2007; 52: 2267
        • Ding G.X.
        • Coffey C.W.
        Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure.
        Int J Radiat Oncol Biol Phys. 2009; 73: 610-617
        • Islam M.K.
        • Purdie T.G.
        • Norrlinger B.D.
        • Alasti H.
        • Moseley D.J.
        • Sharpe M.B.
        • et al.
        Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy.
        Med Phys. 2006; 33: 1573-1582
      1. Kainz K, Lim S, Chen GP, Li XA. PreciseART™ adaptive radiation therapy software: dose monitoring, re-planning and delivery verification. Accuray White Papers. Available on: <https://www.accuray.com/content_type/white-papers/>.

        • Qin A.
        • Gersten D.
        • Liang J.
        • Liu Q.
        • Grill I.
        • Guerrero T.
        • et al.
        A clinical 3D/4D CBCT-based treatment dose monitoring system.
        J Appl Clin Med Phys. 2018; 19: 166-176