Advertisement

Identifying optimal clinical scenarios for synchrotron microbeam radiation therapy: A treatment planning study

Published:March 30, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.03.019

      Highlights

      • Small or superficial target volumes are optimal for MRT.
      • Peak doses up to 100 Gy can be achieved with acceptable valley dose to OARs.
      • Treatment volume is a more important factor than depth in determining PVDR.

      Abstract

      Purpose

      Synchrotron Microbeam Radiation Therapy (MRT) is a pre-clinical modality characterised by spatial dose fractionation on a microscopic scale. Treatment planning studies using clinical datasets have not yet been conducted. Our aim was to investigate MRT dose-distributions in scenarios refractory to conventional treatment and to identify optimal settings for a future Phase I trial.

      Methods

      MRT plans were generated for seven scenarios where re-irradiation was performed clinically. A hybrid algorithm, combining Monte Carlo and convolution-based methods, was used for dose-calculation. The valley dose to organs at risk had to respect the single fraction tolerance doses achieved in the corresponding re-irradiation plans. The resultant peak dose and the peak-to-valley dose ratio (PVDR) at the tumour target volume were assessed.

      Results

      Peak doses greater than 80 Gy in a single fraction, and PVDRs greater than 10, could be achieved for plans with small (<35 cm3) or shallow volumes, particularly recurrent glioblastoma, head and neck tumours, and select loco-regionally recurrent breast cancer sites. Treatment volume was a more important factor than treatment depth in determining the PVDR. The mean PVDR correlated strongly with the size of the target volume (rs = −0.70, p = 0.01). The PVDRs achieved in these clinical scenarios are considerably lower than those reported in previous pre-clinical studies.

      Conclusion

      Our findings suggest that head and neck sites will be optimal scenarios for MRT.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Grotzer M.A.
        • Schultke E.
        • Brauer-Krisch E.
        • Laissue J.A.
        Microbeam radiation therapy: clinical perspectives.
        Phys Medica. 2015; 31: 564-567https://doi.org/10.1016/j.ejmp.2015.02.011
        • Brauer-Krisch E.
        • Serduc R.
        • Siegbahn E.A.
        • Le Duc G.
        • Prezado Y.
        • Bravin A.
        • et al.
        Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.
        Mutat Res. 2010; 704: 160-166https://doi.org/10.1016/j.mrrev.2009.12.003
        • Livingstone J.
        • Adam J.F.
        • Crosbie J.C.
        • Hall C.J.
        • Lye J.E.
        • McKinlay J.
        • et al.
        Preclinical radiotherapy at the Australian Synchrotron's Imaging and Medical Beamline: instrumentation, dosimetry and a small-animal feasibility study.
        J Synchrotron Radiat. 2017; 24: 854-865https://doi.org/10.1107/S1600577517006233
        • Smyth L.M.
        • Senthi S.
        • Crosbie J.C.
        • Rogers P.A.
        The normal tissue effects of microbeam radiotherapy: what do we know, and what do we need to know to plan a human clinical trial?.
        Int J Radiat Biol. 2016; 92: 302-311https://doi.org/10.3109/09553002.2016.1154217
        • Laissue J.A.
        • Bartzsch S.
        • Blattmann H.
        • Brauer-Krisch E.
        • Bravin A.
        • Dallery D.
        • et al.
        Response of the rat spinal cord to X-ray microbeams.
        Radiother Oncol. 2013; 106: 106-111https://doi.org/10.1016/j.radonc.2012.12.007
        • Mukumoto N.
        • Nakayama M.
        • Akasaka H.
        • Shimizu Y.
        • Osuga S.
        • Miyawaki D.
        • et al.
        Sparing of tissue by using micro-slit-beam radiation therapy reduces neurotoxicity compared with broad-beam radiation therapy.
        J Radiat Res. 2017; 58: 17-23https://doi.org/10.1093/jrr/rrw065
        • Slatkin D.N.
        • Spanne P.
        • Dilmanian F.A.
        • Sandborg M.
        Microbeam radiation therapy.
        Med Phys. 1992; 19: 1395-1400https://doi.org/10.1118/1.596771
        • Laissue J.A.
        • Blattmann H.
        • Wagner H.P.
        • Grotzer M.A.
        • Slatkin D.N.
        Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae.
        Dev Med Child Neurol. 2007; 49: 577-581https://doi.org/10.1111/j.1469-8749.2007.00577.x
        • Slatkin D.N.
        • Spanne P.
        • Dilmanian F.A.
        • Gebbers J.O.
        • Laissue J.A.
        Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler.
        Proc Natl Acad Sci USA. 1995; 92: 8783-8787https://doi.org/10.1073/pnas.92.19.8783
        • Zhong N.
        • Morris G.M.
        • Bacarian T.
        • Rosen E.M.
        • Dilmanian F.A.
        Response of rat skin to high-dose unidirectional x-ray microbeams: a histological study.
        Radiat Res. 2003; 160: 133-142https://doi.org/10.1667/3033
        • Laissue J.A.
        • Geiser G.
        • Spanne P.O.
        • Dilmanian F.A.
        • Gebbers J.O.
        • Geiser M.
        • et al.
        Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays.
        Int J Cancer. 1998; 78: 654-660https://doi.org/10.1002/(SICI)1097-0215(19981123)78:5<654::AID-IJC21>3.0.CO;2-L
        • Miura M.
        • Blattmann H.
        • Brauer-Krisch E.
        • Bravin A.
        • Hanson A.L.
        • Nawrocky M.M.
        • et al.
        Radiosurgical palliation of aggressive murine SCCVII squamous cell carcinomas using synchrotron-generated X-ray microbeams.
        Br J Radiol. 2006; 79: 71-75https://doi.org/10.1259/bjr/50464795
        • Siegbahn E.A.
        • Stepanek J.
        • Brauer-Krisch E.
        • Bravin A.
        Determination of dosimetrical quantities used in microbeam radiation therapy (MRT) with Monte Carlo simulations.
        Med Phys. 2006; 33: 3248-3259https://doi.org/10.1118/1.2229422
        • De Felici M.
        • Felici R.
        • Sanchez del Rio M.
        • Ferrero C.
        • Bacarian T.
        • Dilmanian F.A.
        Dose distribution from x-ray microbeam arrays applied to radiation therapy: an EGS4 Monte Carlo study.
        Med Phys. 2005; 32: 2455-2463https://doi.org/10.1118/1.1951043
        • Crosbie J.C.
        • Svalbe I.
        • Midgley S.M.
        • Yagi N.
        • Rogers P.A.
        • Lewis R.A.
        A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity.
        Phys Med Biol. 2008; 53: 6861-6877https://doi.org/10.1088/0031-9155/53/23/014
        • Stepanek J.
        • Blattmann H.
        • Laissue J.A.
        • Lyubimova N.
        • Di Michiel M.
        • Slatkin D.N.
        Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool.
        Med Phys. 2000; 27: 1664-1675https://doi.org/10.1118/1.599034
        • Martinez-Rovira I.
        • Sempau J.
        • Prezado Y.
        Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy.
        Med Phys. 2012; 39: 119-131https://doi.org/10.1118/1.3665768
        • Company F.Z.
        • Allen B.J.
        Calculation of microplanar beam dose profiles in a tissue/lung/tissue phantom.
        Phys Med Biol. 1998; 43: 2491-2501
        • Martinez-Rovira I.
        • Sempau J.
        • Fernandez-Varea J.M.
        • Bravin A.
        • Prezado Y.
        Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy.
        Phys Med Biol. 2010; 55: 4375-4388https://doi.org/10.1088/0031-9155/55/15/012
        • Orion I.
        • Rosenfeld A.B.
        • Dilmanian F.A.
        • Telang F.
        • Ren B.
        • Namito Y.
        Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system.
        Phys Med Biol. 2000; 45: 2497-2508
        • Martinez-Rovira I.
        • Sempau J.
        • Prezado Y.
        Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.
        Med Phys. 2012; 39: 2829-2838https://doi.org/10.1118/1.4705351
        • Donzelli M.
        • Brauer-Krisch E.
        • Oelfke U.
        • Wilkens J.J.
        • Bartzsch S.
        Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy.
        Phys Med Biol. 2018; 63e045013https://doi.org/10.1088/1361-6560/aaa705
        • Schultke E.
        • Balosso J.
        • Breslin T.
        • Cavaletti G.
        • Djonov V.
        • Esteve F.
        • et al.
        Microbeam radiation therapy – grid therapy and beyond: a clinical perspective.
        Br J Radiol. 2017; 90e20170073https://doi.org/10.1259/bjr.20170073
        • Bruzzaniti V.
        • Abate A.
        • Pedrini M.
        • Benassi M.
        • Strigari L.
        IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique.
        J Exp Clin Cancer Res. 2011; 30e52https://doi.org/10.1186/1756-9966-30-52
        • Grimm J.
        • LaCouture T.
        • Croce R.
        • Yeo I.
        • Zhu Y.
        • Xue J.
        Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy.
        J Appl Clin Med Phys. 2011; 12: 267-292https://doi.org/10.1120/jacmp.v12i2.3368
        • Mayo C.
        • Yorke E.
        • Merchant T.E.
        Radiation associated brainstem injury.
        Int J Radiat Oncol Biol Phys. 2010; 76: S36-S41https://doi.org/10.1016/j.ijrobp.2009.08.078
        • Mayo C.
        • Martel M.K.
        • Marks L.B.
        • Flickinger J.
        • Nam J.
        • Kirkpatrick J.
        Radiation dose–volume effects of optic nerves and chiasm.
        Int J Radiat Oncol Biol Phys. 2010; 76: S28-S35https://doi.org/10.1016/j.ijrobp.2009.07.1753
        • Kirkpatrick J.P.
        • van der Kogel A.J.
        • Schultheiss T.E.
        Radiation dose–volume effects in the spinal cord.
        Int J Radiat Oncol Biol Phys. 2010; 76: S42-S49https://doi.org/10.1016/j.ijrobp.2009.04.095
        • Marks L.B.
        • Bentzen S.M.
        • Deasy J.O.
        • Kong F.-M.
        • Bradley J.D.
        • Vogelius I.S.
        • et al.
        Radiation dose–volume effects in the lung.
        Int J Radiat Oncol Biol Phys. 2010; 76: S70-S76https://doi.org/10.1016/j.ijrobp.2009.06.091
        • Gagliardi G.
        • Constine L.S.
        • Moiseenko V.
        • Correa C.
        • Pierce L.J.
        • Allen A.M.
        • et al.
        Radiation dose–volume effects in the heart.
        Int J Radiat Oncol Biol Phys. 2010; 76: S77-S85https://doi.org/10.1016/j.ijrobp.2009.04.093
        • Pieters R.S.
        • Niemierko A.
        • Fullerton B.C.
        • Munzenrider J.E.
        Cauda equina tolerance to high-dose fractionated irradiation.
        Int J Radiat Oncol Biol Phys. 2006; 64: 251-257https://doi.org/10.1016/j.ijrobp.2005.04.019
        • Michalski J.M.
        • Gay H.
        • Jackson A.
        • Tucker S.L.
        • Deasy J.O.
        Radiation dose–volume effects in radiation-induced rectal injury.
        Int J Radiat Oncol Biol Phys. 2010; 76: S123-S129https://doi.org/10.1016/j.ijrobp.2009.03.078
        • Lawrence Y.R.
        • Li X.A.
        • el Naqa I.
        • Hahn C.A.
        • Marks L.B.
        • Merchant T.E.
        • et al.
        Radiation dose–volume effects in the brain.
        Int J Radiat Oncol Biol Phys. 2010; 76: S20-S27https://doi.org/10.1016/j.ijrobp.2009.02.091
        • Serduc R.
        • Bouchet A.
        • Brauer-Krisch E.
        • Laissue J.A.
        • Spiga J.
        • Sarun S.
        • et al.
        Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose.
        Phys Med Biol. 2009; 54: 6711-6724https://doi.org/10.1088/0031-9155/54/21/017
        • Regnard P.
        • Le Duc G.
        • Brauer-Krisch E.
        • Tropres I.
        • Siegbahn E.A.
        • Kusak A.
        • et al.
        Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar x-ray beams from a synchrotron: balance between curing and sparing.
        Phys Med Biol. 2008; 53: 861-878https://doi.org/10.1088/0031-9155/53/4/003
        • Schültke E.
        • Bräuer-Krisch E.
        • Blattmann H.
        • Requardt H.
        • Laissue J.A.
        • Hildebrandt G.
        Survival of rats bearing advanced intracerebral F 98 tumors after glutathione depletion and microbeam radiation therapy: conclusions from a pilot project.
        Radiat Oncol. 2018; 13e89https://doi.org/10.1186/s13014-018-1038-6
        • Corbin K.S.
        • Hellman S.
        • Weichselbaum R.R.
        Extracranial oligometastases: a subset of metastases curable with stereotactic radiotherapy.
        J Clin Oncol. 2013; 31: 1384-1390https://doi.org/10.1200/JCO.2012.45.9651
        • Lo S.S.
        • Moffatt-Bruce S.D.
        • Dawson L.A.
        • Schwarz R.E.
        • Teh B.S.
        • Mayr N.A.
        • et al.
        The role of local therapy in the management of lung and liver oligometastases.
        Nat Rev Clin Oncol. 2011; 8e405https://doi.org/10.1038/nrclinonc.2011.75
        • Tree A.C.
        • Khoo V.S.
        • Eeles R.A.
        • Ahmed M.
        • Dearnaley D.P.
        • Hawkins M.A.
        • et al.
        Stereotactic body radiotherapy for oligometastases.
        Lancet Oncol. 2013; 14: 28-37https://doi.org/10.1016/S1470-2045(12)70510-7
        • Hanif F.
        • Muzaffar K.
        Perveen k, Malhi SM, Simjee SU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment.
        Asian Pac J Cancer Prev. 2017; 18: 3-9
        • Young R.M.
        • Jamshidi A.
        • Davis G.
        • Sherman J.H.
        Current trends in the surgical management and treatment of adult glioblastoma.
        Ann Transl Med. 2015; 3e121https://doi.org/10.3978/j.issn.2305-5839.2015.05.10
        • Gallego O.
        Nonsurgical treatment of recurrent glioblastoma.
        Curr Oncol. 2015; 22: 273-281https://doi.org/10.3747/co.22.2436
        • Krathen R.A.
        • Orengo I.F.
        • Rosen T.
        Cutaneous metastasis: a meta-analysis of data.
        South Med J. 2003; 96: 164-167https://doi.org/10.1097/01.SMJ.0000053676.73249.E5
        • Balch C.M.
        • Buzaid A.C.
        • Soong S.-J.
        • Atkins M.B.
        • Cascinelli N.
        • Coit D.G.
        • et al.
        Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma.
        J Clin Oncol. 2001; 19: 3635-3648https://doi.org/10.1200/JCO.2001.19.16.3635
        • Testori A.
        • Faries M.B.
        • Thompson J.F.
        • Pennacchioli E.
        • Deroose J.P.
        • van Geel A.
        • et al.
        Local and intralesional therapy of in-transit melanoma metastases.
        J Surg Oncol. 2011; 104: 391-396https://doi.org/10.1002/jso.22029
        • Adams S.
        • Kozhaya L.
        • Martiniuk F.
        • Meng T.-C.
        • Chiriboga L.
        • Liebes L.
        • et al.
        Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer.
        Clin Cancer Res. 2012; 18: 6748-6757https://doi.org/10.1158/1078-0432.CCR-12-1149
        • Renier M.
        • Brochard T.
        • Nemoz C.
        • Requardt H.
        • Brauer E.
        • Esteve F.
        • et al.
        The radiotherapy clinical trials projects at the ESRF: technical aspects.
        Eur J Radiol. 2008; 68: S147-S150https://doi.org/10.1016/j.ejrad.2008.04.057
        • Emami B.
        • Lyman J.
        • Brown A.
        • Coia L.
        • Goitein M.
        • Munzenrider J.E.
        • et al.
        Tolerance of normal tissue to therapeutic irradiation.
        Int J Radiat Oncol Biol Phys. 1991; 21: 109-122https://doi.org/10.1016/0360-3016(91)90171-Y
        • Hong A.M.
        • Millington S.
        • Ahern V.
        • McCowage G.
        • Boyle R.
        • Tattersall M.
        • et al.
        Limb preservation surgery with extracorporeal irradiation in the management of malignant bone tumor: the oncological outcomes of 101 patients.
        Ann Oncol. 2013; 24: 2676-2680https://doi.org/10.1093/annonc/mdt252
        • Hayashi K.
        • Araki N.
        • Koizumi M.
        • Suzuki O.
        • Seo Y.
        • Naka N.
        • et al.
        Long-term results of intraoperative extracorporeal irradiation of autogenous bone grafts on primary bone and soft tissue malignancies.
        Acta Oncol. 2015; 54: 138-141https://doi.org/10.3109/0284186X.2014.930172
        • Piazza M.
        • Grady M.S.
        Cranioplasty.
        Neurosurg Clin N Am. 2017; 28: 257-265https://doi.org/10.1016/j.nec.2016.11.008
        • Smyth L.M.L.
        • Donoghue J.F.
        • Ventura J.A.
        • Livingstone J.
        • Bailey T.
        • Day L.R.J.
        • et al.
        Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model.
        Sci Rep. 2018; 8e12044https://doi.org/10.1038/s41598-018-30543-1
        • Kirkpatrick J.P.
        • Meyer J.J.
        • Marks L.B.
        The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery.
        Sem Radiat Oncol. 2008; 18: 240-243https://doi.org/10.1016/j.semradonc.2008.04.005
        • Brenner D.J.
        The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction.
        Sem Radiat Oncol. 2008; 18: 234-239https://doi.org/10.1016/j.semradonc.2008.04.004
        • van der Kogel A.J.
        Chronic effects of neutrons and charged particles on spinal cord, lung, and rectum.
        Radiat Res. 1985; 104: S208-S216
        • Garcia L.M.
        • Leblanc J.
        • Wilkins D.
        • Raaphorst G.P.
        Fitting the linear–quadratic model to detailed data sets for different dose ranges.
        Phys Med Biol. 2006; 51: 2813https://doi.org/10.1088/0031-9155/51/11/009
        • Marks L.B.
        • Yorke E.D.
        • Jackson A.
        • Ten Haken R.K.
        • Constine L.S.
        • Eisbruch A.
        • et al.
        Use of normal tissue complication probability models in the clinic.
        Int J Radiat Oncol Biol Phys. 2010; 76: S10-S19https://doi.org/10.1016/j.ijrobp.2009.07.1754
        • Ryu S.
        • Pugh S.L.
        • Gerszten P.C.
        • Yin F.-F.
        • Timmerman R.D.
        • Hitchcock Y.J.
        • et al.
        RTOG 0631 phase II/III study of image-guided stereotactic radiosurgery for localized (1–3) spine metastases: phase II results.
        Pract Radiat Oncol. 2014; 4: 76-81https://doi.org/10.1016/j.prro.2013.05.001
        • Crosbie J.C.
        • Fournier P.
        • Bartzsch S.
        • Donzelli M.
        • Cornelius I.
        • Stevenson A.W.
        • et al.
        Energy spectra considerations for synchrotron radiotherapy trials on the ID17 bio-medical beamline at the European Synchrotron Radiation Facility.
        J Synchrotron Radiat. 2015; 22: 1035-1041https://doi.org/10.1107/S1600577515008115
        • Livingstone J.
        • Stevenson A.W.
        • Hausermann D.
        • Adam J.
        Experimental optimisation of the x-ray energy in microbeam radiation therapy.
        Phys Med. 2018; 45: 156-161https://doi.org/10.1016/j.ejmp.2017.12.017
        • Prezado Y.
        • Fois G.
        • Le Duc G.
        • Bravin A.
        Gadolinium dose enhancement studies in microbeam radiation therapy.
        Med Phys. 2009; 36: 3568-3574https://doi.org/10.1118/1.3166186
        • Shinohara K.
        • Kondoh T.
        • Nariyama N.
        • Fujita H.
        • Washio M.
        • Aoki Y.
        Optimization of X-ray microplanar beam radiation therapy for deep-seated tumors by a simulation study.
        J Xray Sci Technol. 2014; 22: 395-406https://doi.org/10.3233/XST-140434
        • Lin H.
        • Jing J.
        • Xu L.
        • Mao X.
        Monte Carlo study of the influence of energy spectra, mesh size, high Z element on dose and PVDR based on 1-D and 3-D heterogeneous mouse head phantom for Microbeam Radiation Therapy.
        Phys Med. 2017; 44: 96-107https://doi.org/10.1016/j.ejmp.2017.07.010
        • Livingstone J.
        • Stevenson A.W.
        • Butler D.J.
        • Häusermann D.
        • Adam J.F.
        Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.
        Med Phys. 2016; 43: 4283-4293https://doi.org/10.1118/1.4953833