Advertisement

An in silico planning study comparing doses and estimated risk of toxicity in 3D-CRT, IMRT and proton beam therapy of patients with thymic tumours

Published:March 30, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.03.028

      Highlights

      • Dose distributions was compared between SFUD, 3D-CRT and IMRT in pts with thymic tumours.
      • NTCP for different endpoints was calculated and compared between plans.
      • SFUD was associated with significantly lower doses to organs at risk.
      • The risk of toxicity was reduced with SFUD for several endpoints.

      Abstract

      Purpose

      To compare the dose distributions produced in patients (pts) treated for thymic tumours with spot-scanning proton beam therapy (PBT) implemented with single-field uniform dose (SFUD), intensity-modulated radiation therapy (IMRT) and three-dimensional conformal photon-beam based radiotherapy (3D-CRT).

      Methods

      Twelve pts, treated with 3D-CRT, were included. Alternative IMRT and SFUD plans were constructed. The IMRT plans were created using a setup with beams incident from 5 to 6 different angles. For the SFUD plans, a field-specific planning target volume (PTV) was created for each patient and a clinical target volume (CTV)-based robust optimization was performed. A robustness evaluation was performed for the CTV for all SFUD plans. A dosimetric evaluation was conducted for the doses to the CTV and organs at risk (OARs) for all plans. The normal tissue complication probability (NTCP), for different endpoints, was calculated using the Lyman-Kutcher-Burman (LKB)-model and compared between plans.

      Results

      SFUD was associated with significantly lower mean doses to the oesophagus, the heart, the left anterior descending coronary artery (LAD), lungs and breasts compared to 3D-CRT and IMRT. The maximum dose given to the spinal cord was significantly lower with SFUD. The risks for pneumonitis, esophagitis and myelopathy were significantly reduced in the SFUD plans.

      Conclusions

      The present study showed dosimetric advantages of using scanned-beam PBT for the treatment of thymic tumours, as compared to 3D-CRT and IMRT, especially in regard to lower doses to the oesophagus and lungs. The risk of toxicity was reduced with SFUD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Suster S.
        • Moran C.A.
        Histologic classification of thymoma: the World Health Organization and beyond.
        Hematol Oncol Clin North Am. 2008; 22: 381-392
        • Ettinger D.S.
        • Riely G.J.
        • Akerley W.
        • Borghaei H.
        • Chang A.C.
        • Cheney R.T.
        • et al.
        Thymomas and thymic carcinomas: clinical practice guidelines in oncology.
        J Natl Compr Canc Netw. 2013; 11: 562-576
        • Gagliardi G.
        • Constine L.S.
        • Moiseenko V.
        • Correa C.
        • Pierce L.J.
        • Allen A.M.
        • et al.
        Radiation dose-volume effects in the heart.
        Int J Radiat Oncol Biol Phys. 2010; 76: S77-S85
        • Kirkpatrick J.P.
        • van der Kogel A.J.
        • Schultheiss T.E.
        Radiation dose-volume effects in the spinal cord.
        Int J Radiat Oncol Biol Phys. 2010; 76: S42-S49
        • Marks L.B.
        • Bentzen S.M.
        • Deasy J.O.
        • Kong F.M.
        • Bradley J.D.
        • Vogelius I.S.
        • et al.
        Radiation dose-volume effects in the lung.
        Int J Radiat Oncol Biol Phys. 2010; 76: S70-S76
        • Werner-Wasik M.
        • Yorke E.
        • Deasy J.
        • Nam J.
        • Marks L.B.
        Radiation dose-volume effects in the esophagus.
        Int J Radiat Oncol Biol Phys. 2010; 76: S86-S93
        • Parikh R.R.
        • Rhome R.
        • Hug E.
        • Tsai H.
        • Cahlon O.
        • Chon B.
        • et al.
        Adjuvant proton beam therapy in the management of thymoma: a dosimetric comparison and acute toxicities.
        Clinical lung cancer. 2016; 17: 362-366
        • Vogel J.
        • Berman A.T.
        • Lin L.
        • Pechet T.T.
        • Levin W.P.
        • Gabriel P.
        • et al.
        Prospective study of proton beam radiation therapy for adjuvant and definitive treatment of thymoma and thymic carcinoma: early response and toxicity assessment.
        Radiotherapy Oncol. 2016; 118: 504-509
        • Jia Y.
        • Zhao L.
        • Cheng C.W.
        • McDonald M.W.
        • Das I.J.
        Dose perturbation effect of metallic spinal implants in proton beam therapy.
        J Appl Clin Med Phys. 2015; 16: 333-343
        • Paganetti H.
        • van Luijk P.
        Biological considerations when comparing proton therapy with photon therapy.
        Seminars Radiation Oncol. 2013; 23: 77-87
      1. ICRU. ICRU Report 83: Prescribing, recording, and reporting photon-beam intensity modulated radiotherapy (IMRT). Journal of the International Commission on Radiation Units and Measurements. 2010;10.

        • Kutcher G.J.
        • Burman C.
        Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method.
        Int J Radiat Oncol Biol Phys. 1989; 16: 1623-1630
        • Lyman J.T.
        Complication probability as assessed from dose-volume histograms.
        Radiat Res Suppl. 1985; 8: S13-S19
        • Petersen J.B.
        • Lassen Y.
        • Hansen A.T.
        • Muren L.P.
        • Grau C.
        • Hoyer M.
        Normal liver tissue sparing by intensity-modulated proton stereotactic body radiotherapy for solitary liver tumours.
        Acta Oncol. 2011; 50: 823-828
        • Mondlane G.
        • Gubanski M.
        • Lind P.A.
        • Henry T.
        • Ureba A.
        • Siegbahn A.
        Dosimetric comparison of plans for photon- or proton-beam based radiosurgery of liver metastases.
        Int J Particle Therapy. 2016; 3: 277-284
        • Wang C.L.
        • Gao L.T.
        • Lv C.X.
        • Zhu L.
        • Fang W.T.
        Outcome of nonsurgical treatment for locally advanced thymic tumors.
        J Thorac Dis. 2016; 8: 705-710
        • Marks L.B.
        • Yorke E.D.
        • Jackson A.
        • Ten Haken R.K.
        • Constine L.S.
        • Eisbruch A.
        • et al.
        Use of normal tissue complication probability models in the clinic.
        Int J Radiat Oncol Biol Phys. 2010; 76: S10-S19
        • Cheng Y.J.
        • Nie X.Y.
        • Ji C.C.
        • Lin X.X.
        • Liu L.J.
        • Chen X.M.
        • et al.
        Cardiovascular risk after radiotherapy in women With.
        Breast Cancer J Am Heart Assoc. 2017;6.;
        • McGale P.
        • Darby S.C.
        • Hall P.
        • Adolfsson J.
        • Bengtsson N.O.
        • Bennet A.M.
        • et al.
        Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden.
        Radiotherapy Oncol. 2011; 100: 167-175
        • Darby S.C.
        • Ewertz M.
        • McGale P.
        • Bennet A.M.
        • Blom-Goldman U.
        • Bronnum D.
        • et al.
        Risk of ischemic heart disease in women after radiotherapy for breast cancer.
        N Engl J Med. 2013; 368: 987-998
        • Nielsen M.H.
        • Berg M.
        • Pedersen A.N.
        • Andersen K.
        • Glavicic V.
        • Jakobsen E.H.
        • et al.
        Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: national guidelines and contouring atlas by the Danish Breast Cancer Cooperative Group.
        Acta Oncol. 2013; 52: 703-710
        • Improta I.
        • Palorini F.
        • Cozzarini C.
        • Rancati T.
        • Avuzzi B.
        • Franco P.
        • et al.
        Bladder spatial-dose descriptors correlate with acute urinary toxicity after radiation therapy for prostate cancer.
        Phys Med. 2016; 32: 1681-1689
        • Landoni V.
        • Fiorino C.
        • Cozzarini C.
        • Sanguineti G.
        • Valdagni R.
        • Rancati T.
        Predicting toxicity in radiotherapy for prostate cancer.
        Phys Med. 2016; 32: 521-532
        • Palorini F.
        • Botti A.
        • Carillo V.
        • Gianolini S.
        • Improta I.
        • Iotti C.
        • et al.
        Bladder dose-surface maps and urinary toxicity: Robustness with respect to motion in assessing local dose effects.
        Phys Med. 2016; 32: 506-511
        • Figura N.
        • Hoppe B.S.
        • Flampouri S.
        • Su Z.
        • Osian O.
        • Monroe A.
        • et al.
        Postoperative proton therapy in the management of stage III thymoma.
        J Thoracic Oncol. 2013; 8: e38-e40
        • Kojima H.
        • Isaka M.
        • Nagata M.
        • Onoe T.
        • Murayama S.
        • Ohde Y.
        Preoperative proton beam therapy for thymoma: a case report.
        Ann Thorac Cardiovasc Surg. 2016; 22: 186-188
        • Hoppe B.S.
        • Flampouri S.
        • Su Z.
        • Latif N.
        • Dang N.H.
        • Lynch J.
        • et al.
        Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma.
        Int J Radiat Oncol Biol Phys. 2012; 84: 449-455
        • Ling T.C.
        • Slater J.M.
        • Nookala P.
        • Mifflin R.
        • Grove R.
        • Ly A.M.
        • et al.
        Analysis of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D Conformal Radiotherapy (3D-CRT) for reducing perioperative cardiopulmonary complications in esophageal cancer patients.
        Cancers (Basel). 2014; 6: 2356-2368
        • Roelofs E.
        • Engelsman M.
        • Rasch C.
        • Persoon L.
        • Qamhiyeh S.
        • de Ruysscher D.
        • et al.
        Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer.
        J Thoracic Oncol. 2012; 7: 165-176
        • Chang J.Y.
        • Zhang X.
        • Wang X.
        • Kang Y.
        • Riley B.
        • Bilton S.
        • et al.
        Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer.
        Int J Radiat Oncol Biol Phys. 2006; 65: 1087-1096
        • Fredriksson A.
        • Forsgren A.
        • Hardemark B.
        Minimax optimization for handling range and setup uncertainties in proton therapy.
        Med Phys. 2011; 38: 1672-1684
        • Arts T.
        • Breedveld S.
        • de Jong M.A.
        • Astreinidou E.
        • Tans L.
        • Keskin-Cambay F.
        • et al.
        The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients.
        Radiotherapy Oncol. 2017; 125: 520-525
        • Yoshimura T.
        • Kinoshita R.
        • Onodera S.
        • Toramatsu C.
        • Suzuki R.
        • Ito Y.M.
        • et al.
        NTCP modeling analysis of acute hematologic toxicity in whole pelvic radiation therapy for gynecologic malignancies – A dosimetric comparison of IMRT and spot-scanning proton therapy (SSPT).
        Phys Med. 2016; 32: 1095-1102
        • Park P.C.
        • Zhu X.R.
        • Lee A.K.
        • Sahoo N.
        • Melancon A.D.
        • Zhang L.
        • et al.
        A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties.
        Int J Radiat Oncol Biol Phys. 2012; 82: e329-e336
        • Bert C.
        • Durante M.
        Motion in radiotherapy: particle therapy.
        Phys Med Biol. 2011; 56: R113-R144
        • Li H.
        • Zhang X.
        • Park P.
        • Liu W.
        • Chang J.
        • Liao Z.
        • et al.
        Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients.
        Radiotherapy Oncol. 2015; 114: 367-372
        • Liu W.
        • Liao Z.
        • Schild S.E.
        • Liu Z.
        • Li H.
        • Li Y.
        • et al.
        Impact of respiratory motion on worst-case scenario optimized intensity modulated proton therapy for lung cancers.
        Pract Radiat Oncol. 2015; 5: e77-e86
        • Vogel J.
        • Lin L.
        • Litzky L.A.
        • Berman A.T.
        • Simone 2nd, C.B.
        Predicted rate of secondary malignancies following adjuvant proton versus photon radiation therapy for thymoma.
        Int J Radiat Oncol Biol Phys. 2017; 99: 427-433
        • Hall E.J.
        Intensity-modulated radiation therapy, protons, and the risk of second cancers.
        Int J Radiat Oncol Biol Phys. 2006; 65: 1-7
        • Martel M.K.
        • Sahijdak W.M.
        • Ten Haken R.K.
        • Kessler M.L.
        • Turrisi A.T.
        Fraction size and dose parameters related to the incidence of pericardial effusions.
        Int J Radiat Oncol Biol Phys. 1998; 40: 155-161
        • Chapet O.
        • Kong F.M.
        • Lee J.S.
        • Hayman J.A.
        • Ten Haken R.K.
        Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer.
        Radiotherapy Oncol. 2005; 77: 176-181
        • Pastore F.
        • Conson M.
        • D'Avino V.
        • Palma G.
        • Liuzzi R.
        • Solla R.
        • et al.
        Dose-surface analysis for prediction of severe acute radio-induced skin toxicity in breast cancer patients.
        Acta Oncol. 2016; 55: 466-473
        • Semenenko V.A.
        • Li X.A.
        Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data.
        Phys Med Biol. 2008; 53: 737-755
        • Burman C.
        • Kutcher G.J.
        • Emami B.
        • Goitein M.
        Fitting of normal tissue tolerance data to an analytic function.
        Int J Radiat Oncol Biol Phys. 1991; 21: 123-135
        • Schultheiss T.E.
        The radiation dose-response of the human spinal cord.
        Int J Radiat Oncol Biol Phys. 2008; 71: 1455-1459