Advertisement

Non-ionizing, laser radiation in Theranostics: The need for dosimetry and the role of Medical Physics

      Highlights

      • Non-ionizing laser irradiation in biomedical research.
      • Laser – matter interactions and mechanisms.
      • Biomedical laser applications in diagnosis and therapy (Theranostics).
      • The role of Medical Physicists in laser treatment dosimetry and planning.

      Abstract

      The discovery of coherent laser light in 1960 shifted and expanded the biomedical applications of radiation to the non-ionizing part of the electromagnetic spectrum. As in the case of ionizing radiation, but considering the laser specific features, the effective, safe and ethically acceptable use of biomedical laser technology requires interdisciplinary collaboration between physicists, engineers and physicians. This should extend at the research, preclinical and clinical level, inspiring at this time the dynamic discipline of Medical Physics in new areas.
      With this work we aim to introduce the interested reader in the need of dosimetry in medical applications of laser radiation, as this field is still unexplored. After some necessary definitions, we give a brief review of the basic biophysical mechanisms of coherent light-matter interactions. The manuscript focuses on biomedical laser applications in diagnosis and therapy (i.e. in Theranostics). From the vast field of laser theranostic applications we have chosen some experimental and theoretical results – examples of quantification of the laser effect, particularly relevant to soft and hard tissue laser ablation, laser induced photodiagnosis and photodynamic therapy of cancer. These topics intend to highlight the important role of Medical Physicists in the optimization of well-established laser based clinical procedures and mainly emerge the necessity of the relevant dosimetry for each application. Finally, we hope that this effort is going to give food for thought and highlight the importance of deep knowledge of the physics behind some everyday medical applications.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Marcu L.
        • Boppart S.A.
        • Hutchinson M.R.
        • Popp J.
        • Wilson B.C.
        Biophotonics: the big picture.
        J Biomed Opt. 2017; 23: 1-7https://doi.org/10.1117/1.jbo.23.2.021103
        • Jürgens M.
        • Mayerhöfer T.
        • Popp J.
        • Lee G.
        • Matthews D.L.
        • Wilson B.C.
        Introduction to biophotonics.
        in: Popp J. Tuchin V.V. Chiou A. Heinemann S.H. Handbook of Biophotonics. 1st ed. Wiley-VCH Verlag GmbH & Co. KGaA, 2013 (https://doi.org/10.1002/9783527643981.bphot001)
        • Fan Z.
        • Fu P.P.
        • Yu H.
        • Ray P.C.
        Theranostic nanomedicine for cancer detection and treatment.
        J Food Drug Anal. 2014; 22: 3-17https://doi.org/10.1016/j.jfda.2014.01.001
        • Josefsen L.B.
        • Boyle R.W.
        Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics.
        Theranostics. 2012; 2: 916-966https://doi.org/10.7150/thno.4571
        • Xiong R.
        • Soenen S.J.
        • Braeckmans K.
        • Skirtach A.G.
        Towards theranostic multicompartment microcapsules: in-situ diagnostics and laser-induced treatment.
        Theranostics. 2013; 3: 141-151https://doi.org/10.7150/thno.5846
        • Adams F.
        • Qiu T.
        • Mark A.
        • Fritz B.
        • Kramer L.
        • Schlager D.
        • et al.
        Soft 3d-printed phantom of the human kidney with collecting system.
        Ann Biomed Eng. 2017; 45: 963-972https://doi.org/10.1007/s10439-016-1757-5
        • Santos-Dias A.
        CO2 laser surgery in hemophilia treatment.
        J Clin Laser Med Surg. 1992; 10: 297-301https://doi.org/10.1089/clm.1992.10.297
        • Laughlin J.S.
        History of medical physics.
        Phys Today. 1983;36.; https://doi.org/10.1063/1.2915742
        • Fujimoto J.G.
        • Pitris C.
        • Boppart S.A.
        • Brezinski M.E.
        Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy.
        Neoplasia (New York, NY). 2000; 2: 9-25
      1. Tuchin VV. Tissue Optics and Photonics: Light-Tissue Interaction II. 2016. 2016;2. DOI: https://doi.org/10.18287/jbpe16.02.030201.

        • Markolf H.N.
        Fundamentals and Applications.
        Springer-Verlag, Berlin2004 (doi: https://doi.org/10.1007/978-3-662-04717-0)
      2. Golub MA, Grossinger I. Diffractive optical elements for biomedical applications. BiOS Europe '97. San Remo, Italy: Proceedings of the SPIE; 1998. p. 12. DOI: https://doi.org/10.1117/12.301110.

        • Dyer P.E.
        Excimer laser polymer ablation: twenty years on.
        Appl Phys A Mater Sci Process. 2003; 77: 167-173https://doi.org/10.1007/s00339-003-2137-1
        • Zhigilei L.V.
        • Garrison B.J.
        Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids.
        Appl Phys Lett. 1999; 74: 1341-1343https://doi.org/10.1063/1.123544
        • Bityurin N.
        • Luk'yanchuk B.S.
        • Hong M.H.
        • Chong T.C.
        Models for laser ablation of polymers.
        Chem Rev. 2003; 103: 519-552https://doi.org/10.1021/cr010426b
        • Vogel A.
        • Venugopalan V.
        Mechanisms of pulsed laser ablation of biological tissues.
        Chem Rev. 2003; 103: 577-644https://doi.org/10.1021/cr010379n
        • Spyratou E.
        • Makropoulou M.
        • Serafetinides A.A.
        Study of visible and mid-infrared laser ablation mechanism of PMMA and intraocular lenses: experimental and theoretical results.
        Lasers Med Sci. 2008; 23: 179-188https://doi.org/10.1007/s10103-007-0468-4
        • Filippiadis D.K.
        • Marcia S.
        • Masala S.
        • Deschamps F.
        • Kelekis A.
        Percutaneous vertebroplasty and kyphoplasty: current status, new developments and old controversies.
        Cardiovasc Intervent Radiol. 2017; 40: 1815-1823https://doi.org/10.1007/s00270-017-1779-x
        • Pettit G.H.
        • Sauerbrey R.
        Pulsed ultraviolet laser ablation.
        Appl Phys A Mater Sci Process. 1993; 56: 51-63https://doi.org/10.1007/bf00351903
        • Paltauf G.
        • Dyer P.E.
        Photomechanical processes and effects in ablation.
        Chem Rev. 2003; 103: 487-518https://doi.org/10.1021/cr010436c
        • Hale G.M.
        • Querry M.R.
        Optical constants of water in the 200-nm to 200-microm wavelength region.
        Appl Opt. 1973; 12: 555-563https://doi.org/10.1364/ao.12.000555
        • Jiménez J.R.
        • Rodríguez-Marín F.
        • Anera R.G.
        • del Barco L.J.
        Deviations of Lambert-Beer’s law affect corneal refractive parameters after refractive surgery.
        Opt Express. 2006; 14: 5411-5417https://doi.org/10.1364/OE.14.005411
        • Chang A.W.
        • Tsang A.C.
        • Contreras J.E.
        • Huynh P.D.
        • Calvano C.J.
        • Crnic-Rein T.C.
        • et al.
        Corneal tissue ablation depth and the Munnerlyn formula.
        J Cataract Refract Surg. 2003; 29: 1204-1210https://doi.org/10.1016/S0886-3350(02)01918-1
        • Spyratou E.
        • Makropoulou M.
        • Tsoutsi D.
        • Zoulinakis G.
        • Bacharis C.
        • Asproudis I.
        • et al.
        Conical structures on acrylic intraocular lens (IOLs) materials after 193-nm excimer laser ablation.
        Mater Sci Appl. 2012; 03: 414-424https://doi.org/10.4236/msa.2012.36059
        • Drakaki E.
        • Makropoulou M.
        • Serafetinides A.A.
        In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue.
        Lasers Med Sci. 2008; 23: 267-276https://doi.org/10.1007/s10103-007-0478-2
        • Wang L.
        • Jacques S.L.
        • Zheng L.
        MCML–Monte Carlo modeling of light transport in multi-layered tissues.
        Comput Methods Programs Biomed. 1995; 47: 131-146https://doi.org/10.1016/0169-2607(95)01640-F
        • Wang L.
        • Jacques S.L.
        • Zheng L.
        CONV-convolution for responses to a finite diameter photon beam incident on multi-layered tissues.
        Comput Methods Programs Biomed. 1997; 54: 141-150https://doi.org/10.1016/S0169-2607(97)00021-7
        • Spezi E.
        • Lewis G.
        An overview of Monte Carlo treatment planning for radiotherapy.
        Radiat Prot Dosimetry. 2008; 131: 123-129https://doi.org/10.1093/rpd/ncn277
        • Hourdakis C.J.
        • Perris A.
        A Monte Carlo estimation of tissue optical properties for use in laser dosimetry.
        Phys Med Biol. 1995; 40: 351-364https://doi.org/10.1088/0031-9155/40/3/002
        • Meglinsky I.V.
        • Matcher S.J.
        Modelling the sampling volume for skin blood oxygenation measurements.
        Med Biol Eng Comput. 2001; 39: 44-50https://doi.org/10.1007/BF02345265
      3. Doronin A, Meglinski I. Online Monte Carlo based calculator of human skin spectra and color. Saratov Fall Meeting 2011: Proceedings of the SPIE. 2012;8337. p. 8. doi: https://doi.org/10.1117/12.923732.

      4. Krasnikov IV, Seteikin AY, Drakaki E, Makropoulou M. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy. Saratov Fall Meeting 2011: Proceedings of the SPIE. 2012;8337. p. 10. DOI: https://doi.org/10.1117/12.923741.

        • Seteikin A.Y.
        • Krasnikov I.V.
        • Drakaki E.
        • Makropoulou M.
        Dynamic model of thermal reaction of biological tissues to laser-induced fluorescence and photodynamic therapy.
        J Biomed Opt. 2013; 18075002https://doi.org/10.1117/1.jbo.18.7.075002
        • Battle Jr., E.F.
        • Hobbs L.M.
        Laser therapy on darker ethnic skin.
        Dermatol Clin. 2003; 21: 713-723https://doi.org/10.1016/S0733-8635(03)00086-X
        • Anderson R.R.
        • Parrish J.A.
        Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation.
        Science (New York, NY). 1983; 220: 524-527https://doi.org/10.1126/science.6836297
        • Vasefi F.
        • MacKinnon N.
        • Saager R.
        • Kelly K.M.
        • Maly T.
        • Booth N.
        • et al.
        Separating melanin from hemodynamics in nevi using multimode hyperspectral dermoscopy and spatial frequency domain spectroscopy.
        J Biomed Opt. 2016; 21: 114001-114011https://doi.org/10.1117/1.JBO.21.11.114001
        • Kara E.
        • Cilesiz I.
        • Gulsoy M.
        Monitoring system for investigating the effect of temperature change on optical properties.
        Lasers Med Sci. 2018; 33: 1763-1768https://doi.org/10.1007/s10103-018-2537-2
        • Karampelas I.
        • Sloan A.E.
        Laser-induced interstitial thermotherapy of gliomas.
        Prog Neurol Surg. 2018; 32: 14-26https://doi.org/10.1159/000469676
        • Hu X.H.
        • Feng Y.
        • Lu J.Q.
        • Allison R.R.
        • Cuenca R.E.
        • Downie G.H.
        • et al.
        Modeling of a type II photofrin-mediated photodynamic therapy process in a heterogeneous tissue phantom.
        Photochem Photobiol. 2005; 81: 1460-1468https://doi.org/10.1562/2005-05-04-ra-513
        • Dougherty T.J.
        • Gomer C.J.
        • Henderson B.W.
        • Jori G.
        • Kessel D.
        • Korbelik M.
        • et al.
        Photodynamic therapy.
        J Natl Cancer Inst. 1998; 90: 889-905
        • Wilson B.C.
        • Patterson M.S.
        The physics, biophysics and technology of photodynamic therapy.
        Phys Med Biol. 2008; 53: R61-R109https://doi.org/10.1088/0031-9155/53/9/r01
        • Kim M.M.
        • Ghogare A.A.
        • Greer A.
        • Zhu T.C.
        On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling.
        Phys Med Biol. 2017; 62: R1-r48https://doi.org/10.1088/1361-6560/62/5/r1
        • Zhang J.
        • Jiang C.
        • Figueiró Longo J.P.
        • Azevedo R.B.
        • Zhang H.
        • Muehlmann L.A.
        An updated overview on the development of new photosensitizers for anticancer photodynamic therapy.
        Acta Pharm Sin B. 2018; 8: 137-146https://doi.org/10.1016/j.apsb.2017.09.003
        • Mallas E.
        • Karamanolis G.
        • Zissis M.
        • Karvouni E.
        • Kostopanagiotou G.
        • Macropoulou M.
        • et al.
        Photodynamic therapy in normal pig stomach: protective effect of octreotide.
        Endoscopy. 2004; 36: 893-897https://doi.org/10.1055/s-2004-825857
      5. Drakaki H, Makropoulou MI, Mallas E, Serafetinides AA. Dosimetry in photodynamic therapy and laser-induced fluorescence spectroscopy. In: 10th International School on Quantum Electronics: Lasers: Physics and Applications. Varna, Bulgaria: Proceedings of the SPIE. 1999;3571. p. 5. DOI: https://doi.org/10.1117/12.347660.

      6. AAPM Report No. 88, Photodynamic therapy dosimetry, AAPM Task Group report of the General Medical Physics Committee of the Science Council. Medical Physics Publishing. (2005), https://www.aapm.org/pubs/reports/rpt_88.pdf.

      7. AAPM Report No. 57, Recommended nomenclature for physical quantities in medical applications of light, AAPM Task Group 2 report of the General Medical Physics Committee of the Science Council. Medical Physics Publishing. (1996), https://www.aapm.org/pubs/reports/RPT_57.pdf.

        • Kareliotis G.
        • Liossi S.
        • Makropoulou M.
        Assessment of singlet oxygen dosimetry concepts in photodynamic therapy through computational modeling.
        Photodiagnosis Photodyn Ther. 2018; 21: 224-233https://doi.org/10.1016/j.pdpdt.2017.12.016
        • Ash C.
        • Dubec M.
        • Donne K.
        • Bashford T.
        Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods.
        Lasers Med Sci. 2017; https://doi.org/10.1007/s10103-017-2317-4
        • Kareliotis G.
        • Papachristou M.
        • Priftakis D.
        • Datseris I.
        • Makropoulou M.
        Computational study of necrotic areas in rat liver tissue treated with photodynamic therapy.
        J Photochem Photobiol B. 2019; 192: 40-48https://doi.org/10.1016/j.jphotobiol.2019.01.007
        • Pogue B.W.
        • Elliott J.T.
        • Kanick S.C.
        • Davis S.C.
        • Samkoe K.S.
        • Maytin E.V.
        • et al.
        Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success.
        Phys Med Biol. 2016; 61: R57-R89https://doi.org/10.1088/0031-9155/61/7/r57
      8. Spyratou E, Makropoulou M, Efstathopoulos EP, Georgakilas AG, Sihver L. Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers. 2017;9. DOI: https://doi.org/10.3390/cancers9120173.

        • Strickland D.
        • Mourou G.
        Compression of amplified chirped optical pulses.
        Opt Commun. 1985; 56: 219-221https://doi.org/10.1016/0030-4018(85)90120-8
        • Mourou G.
        Relativistic Optics: A New Approach to Attosecond Physics.
        Optical Society of America, Rochester, New York2006 (Frontiers in Optics, p. JWG1. doi: https://doi.org/10.1364/FIO.2006.JWG1)
      9. Serafetinides A, Makropoulou M. Towards bridging non-ionizing, ultra intense, laser radiation and ionizing radiation in cancer therapy. In: 20th International Conference and School on Quantum Electronics: Laser Physics and Applications. Nessebar, Bulgaria: Proceedings of the SPIE. 2018; 11047. p. 8 DOI: https://doi.org/10.1117/12.2518241.

      10. The Nobel Prize in Physics 2018. Nobel Media AB 2018: NobelPrize.org., https://www.nobelprize.org/prizes/physics/2018/summary/; 2018 (accessed 03.12.18).