Advertisement
Original paper| Volume 65, P21-28, September 2019

Download started.

Ok

Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles

Published:August 10, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.07.003

      Highlights

      • Design of a radiobiology facility based on a laser-driven ion beam source.
      • Geant4 based simulation tool (BDSIM) verified the beam optics design.
      • BDSIM determined the energy deposition profile in the end station.
      • Simulations confirmed 15 MeV as optimal beam energy.

      Abstract

      The Centre for the Clinical Application of Particles’ Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions.
      BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Cancer Research UK. Worldwide cancer incidence statistics. URL:https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence; 2018. [accessed 13.04.2019].

      2. Cancer Research UK. Cancer diagnosis and treatment statistics. URL:https://www.cancerresearchuk.org/health-professional/cancer-statistics/diagnosis-and-treatment; 2017 [accessed 13.04.2019].

        • Levin W.P.
        • Kooy H.
        • Loeffler J.S.
        • DeLaney T.F.
        Proton beam therapy.
        Br J Cancer. 2005; 93: 849-854
      3. NHS UK. Proton beam therapy. URL:https://www.england.nhs.uk/commissioning/spec-services/highly-spec-services/pbt/; 2019 [accessed 13.04.2019].

        • Bulanov S.
        • Esirkepov T.
        • Khoroshkov V.
        • Kuznetsov A.
        • Pegoraro F.
        Oncological hadrontherapy with laser ion accelerators.
        Phys Lett A. 2002; 299: 240-247
        • Fourkal E.
        • Li J.S.
        • Ding M.
        • Tajima T.
        • Ma C.M.
        Particle selection for laser-accelerated proton therapy feasibility study.
        Med Phys. 2003; 30: 1660-1670
        • Malka V.
        • Fritzler S.
        • Lefebvre E.
        • d’Humires E.
        • Ferrand R.
        • Grillon G.
        • et al.
        Practicability of proton therapy using compact laser systems.
        Med Phys. 2004; 31: 1587-1592
        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate flash irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6 (pp. 245ra93–245ra93)
        • Vozenin M.C.
        • De Fornel P.
        • Petersson K.
        • Favaudon V.
        • Jaccard M.
        • Germond J.F.
        • et al.
        The advantage of FLASH radiotherapy confirmed in mini–pig and cat–cancer patients.
        Clin Cancer Res. 2019; 25: 35-42
        • Paganetti H.
        Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer.
        Phys Med Biol. 2014; 59: R419
        • Jones B.
        • McMahon S.J.
        • Prise K.M.
        The radiobiology of proton therapy: challenges and opportunities around relative biological effectiveness.
        Clin Oncol. 2018; 30: 285-292
        • Giovannini G.
        • Böhlen T.
        • Cabal G.
        • Bauer J.
        • Tessonnier T.
        • Frey K.
        • et al.
        Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios.
        Radiat Oncol. 2016; 11: 68
        • Lühr A.
        • von Neubeck C.
        • Krause M.
        • Troost E.G.C.
        Relative biological effectiveness in proton beam therapy – current knowledge and future challenges.
        Clin Transl Radiat Oncol. 2018; 9: 35-41
        • Kraft S.D.
        • Richter C.
        • Zeil K.
        • Baumann M.
        • Beyreuther E.
        • Bock S.
        • et al.
        Dose–dependent biological damage of tumour cells by laser–accelerated proton beams.
        New J Phys. 2010; 12085003
        • Fiorini F.
        • Kirby D.
        • Borghesi M.
        • Doria D.
        • Jeynes J.C.
        • Kakolee K.F.
        • et al.
        Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams.
        Phys Med Biol. 2011; 56: 6969-6982
        • Doria D.
        • Kakolee K.F.
        • Kar S.
        • Litt S.K.
        • Fiorini F.
        • Ahmed H.
        • et al.
        Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s.
        AIP Adv. 2012; 2011209
        • Zeil K.
        • Baumann M.
        • Beyreuther E.
        • Burris-Mog T.
        • Cowan T.E.
        • Enghardt W.
        • et al.
        Dose–controlled irradiation of cancer cells with laser-accelerated proton pulses.
        Appl Phys B. 2013; 110: 437-444
        • Masood U.
        • Bussmann M.
        • Cowan T.E.
        • Enghardt W.
        • Karsch L.
        • Kroll F.
        • et al.
        A compact solution for ion beam therapy with laser accelerated protons.
        Appl Phys B. 2014; 117: 41-52
        • Zlobinskaya O.
        • Siebenwirth C.
        • Greubel C.
        • Hable V.
        • Hertenberger R.
        • Humble N.
        • et al.
        The effects of ultra–high dose rate proton irradiation on growth delay in the treatment of human tumor xenografts in nude mice.
        Radiat Res. 2014; 181: 177-183
        • Manti L.
        • Perozziello F.
        • Borghesi M.
        • Candiano G.
        • Chaudhary P.
        • Cirrone G.
        • et al.
        The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells.
        J Instrum. 2017; 12: C03084
        • Romano F.
        • Schillaci F.
        • Cirrone G.
        • Cuttone G.
        • Scuderi V.
        • Allegra L.
        • et al.
        The elimed transport and dosimetry beamline for laser-driven ion beams.
        Nucl Instrum Methods Phys Res Sect A. 2016; 829 (2nd European Advanced Accelerator Concepts Workshop – EAAC 2015): 153-158
        • Masood U.
        • Cowan T.E.
        • Enghardt W.
        • Hofmann K.M.
        • Karsch L.
        • Kroll F.
        • et al.
        A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.
        Phys Med Biol. 2017; 62: 5531-5555
        • Chaudhary P.
        • Gwynne D.
        • Doria D.
        • Romagnani L.
        • Maiorino C.
        • Padda H.
        Effectiveness of laser accelerated ultra high dose rate protons in DNA DSB damage induction under hypoxic conditions.
        in: 44th EPS Conference on Plasma Physics, EPS 2017. vol. 44F. European Physical Society (EPS), 2017 (p. P1.217)
        • Margarone D.
        • Cirrone G.A.P.
        • Cuttone G.
        • Amico A.
        • And L.
        • Borghesi M.
        • et al.
        Elimaia: a laser–driven ion accelerator for multidisciplinary applications.
        Quantum Beam Sci. 2018; 2
        • Agapov I.
        • Blair G.A.
        • Malton S.
        • Deacon L.
        BDSIM: a particle tracking code for accelerator beam-line simulations including particle-matter interactions.
        Nucl Instrum Methods A. 2009; 606: 708-712
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • Arce P.
        • Asai M.
        • Aso T.
        • et al.
        Recent developments in Geant4.
        Nucl Instrum Methods Phys Res Sect A. 2016; 835: 186-225
        • Autin B.
        • Carli C.
        • D’Amico T.
        • Gröbner O.
        • Martini M.
        • Wildner E.
        BeamOptics: a program for analytical beam optics.
        (Technical Report CERN-98-06) European Organization for Nuclear Research (CERN), 1998 (URL:http://inis.iaea.org/search/search.aspx?orig_q=RN:30052986)
        • Borghesi M.
        Laser-driven ion acceleration: state of the art and emerging mechanisms.
        Nucl Instrum Methods A. 2014; 740: 6-9
        • Arber T.D.
        • Bennett K.
        • Brady C.S.
        • Lawrence-Douglas A.
        • Ramsay M.G.
        • Sircombe N.J.
        • et al.
        Contemporary particle-in-cell approach to laser-plasma modelling.
        Plasma Phys Control Fusion. 2015; 57113001
        • Pozimski J.
        • Aslaninejad M.
        Gabor lenses for capture and energy selection of laser driven ion beams in cancer treatment.
        Laser Particle Beams. 2013; 31: 723-733
        • Hofmann I.
        • Meyer-ter Vehn J.
        • Yan X.
        • Orzhekhovskaya A.
        • Yaramyshev S.
        Collection and focusing of laser accelerated ion beams for therapy applications.
        Phys Rev ST Accel Beams. 2011; 14031304
        • Posocco P.A.
        • Merchant M.
        • Pozimski J.
        • Xia Y.
        First test of the imperial college gabor (plasma) lens prototype at the surrey ion beam centre.
        in: Proceedings, 7th International Particle Accelerator Conference (IPAC 2016): Busan, Korea. 2016 (p. TUPMY024)
        • Reinhardt S.
        • Würl M.
        • Greubel C.
        • Humble N.
        • Wilkens J.J.
        • Hillbrand M.
        • et al.
        Investigation of EBT2 and EBT3 films for proton dosimetry in the 4–20 Mev energy range.
        Radiat Environ Biophys. 2015; 54: 71-79
        • Bin J.H.
        • Ji Q.
        • Seidl P.A.
        • Raftrey D.
        • Steinke S.
        • Persaud A.
        • Nakamura K.
        • Gonsalves A.
        • Leemans W.P.
        • Schenkel T.
        Absolute calibration of GafChromic film for very high flux laser driven ion beams.
        Rev Sci Instrum. 2019; 90053301