Highlights
- •Significant changes were observed in the breast surface during the course of breast cancer radiotherapy.
- •Because of deformations an additional outer margin is required which is important to consider when using IMRT or VMAT.
- •An additional margin of 8 mm outside the breast surface is required to take account of the changes in the breast surface.
- •The breast deformations were not fully predictable, although a moderate correlation was found with body mass index.
Abstract
Purpose
The aim of this retrospective study was to investigate and quantify the extent of
breast deformation during the course of breast cancer (BC) radiotherapy (RT). The
magnitude of breast deformation determines the additional outer margin needed for
treatment planning to deliver a full dose to the target volume. This is especially
important when using inverse planning techniques.
Methods
A total of 93 BC patients treated with RT and with daily CBCT image guidance were
selected for this study. Patients underwent either only breast-conserving surgery
(BCS) (n = 5), BCS with sentinel node biopsy (n = 57) or BCS with radical axillary node dissection (n = 31). The treatment area included the whole breast and chest wall (54%) or also
the axillary lymph nodes (46%). 3D-registration was conducted between 1731 CBCT images
and the respective planning CT images to assess the difference in breast surface.
Results
The largest maximum breast surface expansion (MBSE) was 15 mm; the average was 2.4 ± 2.1 mm.
In 294 fractions (17%), the MBSE was ≥5 mm. An outer margin of 8 mm would have been
required to cover the whole breast in 95% of the treated fractions. There was a statistically
significant correlation between the MBSE and body mass index (r = 0.38, p = 0.001).
Conclusions
Significant changes in the breast surface occur during the course of BC RT which should
be considered in treatment planning. An additional margin outside the breast surface
of at least 8 mm is required to take into account the anatomical changes occurring
during BC RT.
Keywords
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Effect of radiotherapy after breast-conserving surgery on 10- year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials.Lancet. 2011; 378: 1707-1716
- Radiation therapy for early-stage breast cancer after breast-conserving surgery.N Engl J Med. 2009; 360: 63-70
- Cosmesis from the patient's and the doctor's view.Int J Radiat Oncol Biol Phys. 2003; 57: 345-354
- The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials.Lancet Oncol. 2013; 14: 1086-1094
- Cosmetic outcomes and complications reported by patients having undergone breast-conserving treatment.Int J Radiat Oncol Biol Phys. 2012; 83: 839-844
- Ten years results of the Canadian breast intensity modulated radiation therapy (IMRT) randomized controlled trial.Radiother Oncol. 2016; 121: 414-419
- Standard or hypofractionated radiotherapy in the postoperative treatment of breast cancer: a retrospective analysis of acute skin toxicity and dose inhomogeneities.BMC Cancer. 2013; 13: 230
- Critical appraisal of the role of volumetric modulated arc therapy in the radiation therapy management of breast cancer.Radiat Oncol. 2017; 12: 200
- Robustness of VMAT and 3DCRT plans toward setup errors in radiation therapy of locally advanced left-sided breast cancer with DIBH.Phys Med. 2018; 45: 12-18
- Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy.Radiat Oncol. 2015; 10: 79
- Breast edema in breast cancer patients following breast-conserving surgery and radiotherapy: a systematic review.Breast Cancer Res Treat. 2014; 147: 463-471
- Impact of radiation therapy on acute toxicity in breast conservation therapy for early breast cancer.Clin Oncol (R Coll Radiol). 2004; 16: 12-16
- Breast oedema following free flap breast reconstruction.Breast. 2017; 34: 73-76
- Planning strategies in volumetric modulated arc therapy for breast.Med Phys. 2011; 38: 4025-4031
- The effect of optimization on surface dose in intensity modulated radiotherapy (IMRT).Phys Med Biol. 2004; 49: 4919-4928
- Virtual bolus for inversion radiotherapy planning in intensity-modulated radiotherapy of breast carcinoma within the scope of adjuvant therapy.Strahlenther Onkol. 2002; 178: 139-146
- Dosimetric effects of anatomical deformations and positioning errors in VMAT breast radiotherapy.J Appl Clin Med Phys. 2018; 19: 506-516
- Dosimetric impact of post-operative seroma reduction during radiotherapy after breast-conserving surgery.Radiother Oncol. 2011; 100: 265-270
- Three-dimensional dose evaluation in breast cancer patients to define decision criteria for adaptive radiotherapy.Acta Oncol. 2017; 56: 1487-1494
- Seroma formation following breast cancer surgery.Breast J. 2003; 9: 385-388
- Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy: Risk-modifying factors.Strahlenther Onkol. 2016; 192: 8-16
- Breast Cancer-Related Lymphedema after Neoadjuvant Chemotherapy.Cancer Res Treat. 2015; 47: 416-423
- Breast patient setup error assessment: comparison of electronic portal image devices and cone-beam computed tomography matching results.Int J Radiat Oncol Biol Phys. 2010; 78: 1235-1243
- Estimation of optimal matching position for orthogonal kV setup images and minimal setup margins in radiotherapy of whole breast and lymph node areas.Rep Pract Oncol Radiother. 2014; 19: 369-375
- An image-guided study of setup reproducibility of postmastectomy breast cancer patients treated with inverse-planned intensity modulated radiation therapy.Int J Radiat Oncol Biol Phys. 2015; 91: 58-64
- Optimal selection of optimization bolus thickness in planning of VMAT breat cancer radiotherapy treatments.Med Dosim. 2018;Oct; : 30
- Real-time intra-fraction motion management in breast cancer radiotherapy: analysis of 2028 treatment sessions.Radiat Oncol. 2018; 13: 128
- Inter- and intra-fraction geometric errors in daily image-guided radiotherapy of free-breathing breast cancer patients measured with continuous portal imaging.Acta Oncol. 2014; 53: 802-808
- EP-2050: Geometrical uncertainties of humerus and breast in breast cancer radiotherapy.Radiother Oncol. 2018; 127: S1122
- Residual position errors of lymph node surrogates in breast cancer adjuvant radiotherapy: comparison of two arm fixation devices and the effect of arm position correction.Med Dosim. 2016; 41: 47-52
- Experimental and Analytical Comparisons of Tissue Dielectric Constant (TDC) and Bioimpedance Spectroscopy (BIS) in Assessment of Early Arm Lymphedema in Breast Cancer Patients after Axillary Surgery and Radiotherapy.Lymphat Res Biol. 2015; 13: 176-185
Article info
Publication history
Published online: August 05, 2019
Accepted:
July 25,
2019
Received in revised form:
July 18,
2019
Received:
March 11,
2019
Identification
Copyright
© 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.