Original paper| Volume 65, P1-5, September 2019

Download started.


Breast deformation during the course of radiotherapy: The need for an additional outer margin

Published:August 05, 2019DOI:


      • Significant changes were observed in the breast surface during the course of breast cancer radiotherapy.
      • Because of deformations an additional outer margin is required which is important to consider when using IMRT or VMAT.
      • An additional margin of 8 mm outside the breast surface is required to take account of the changes in the breast surface.
      • The breast deformations were not fully predictable, although a moderate correlation was found with body mass index.



      The aim of this retrospective study was to investigate and quantify the extent of breast deformation during the course of breast cancer (BC) radiotherapy (RT). The magnitude of breast deformation determines the additional outer margin needed for treatment planning to deliver a full dose to the target volume. This is especially important when using inverse planning techniques.


      A total of 93 BC patients treated with RT and with daily CBCT image guidance were selected for this study. Patients underwent either only breast-conserving surgery (BCS) (n = 5), BCS with sentinel node biopsy (n = 57) or BCS with radical axillary node dissection (n = 31). The treatment area included the whole breast and chest wall (54%) or also the axillary lymph nodes (46%). 3D-registration was conducted between 1731 CBCT images and the respective planning CT images to assess the difference in breast surface.


      The largest maximum breast surface expansion (MBSE) was 15 mm; the average was 2.4 ± 2.1 mm. In 294 fractions (17%), the MBSE was ≥5 mm. An outer margin of 8 mm would have been required to cover the whole breast in 95% of the treated fractions. There was a statistically significant correlation between the MBSE and body mass index (r = 0.38, p = 0.001).


      Significant changes in the breast surface occur during the course of BC RT which should be considered in treatment planning. An additional margin outside the breast surface of at least 8 mm is required to take into account the anatomical changes occurring during BC RT.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)
        • Darby S.
        • McGale P.
        • Correa C.
        • Taylor C.
        • Arriagada R.
        • et al.
        Effect of radiotherapy after breast-conserving surgery on 10- year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials.
        Lancet. 2011; 378: 1707-1716
        • Buchholz T.A.
        Radiation therapy for early-stage breast cancer after breast-conserving surgery.
        N Engl J Med. 2009; 360: 63-70
        • Hoeller U.
        • Kuhlmey A.
        • Bajrovic A.
        • Grader K.
        • Berger J.
        • Tribius S.
        • et al.
        Cosmesis from the patient's and the doctor's view.
        Int J Radiat Oncol Biol Phys. 2003; 57: 345-354
        • Haviland J.S.
        • Owen J.R.
        • Dewar J.A.
        • Agrawal R.K.
        • Barrett J.
        • Barrett-Lee P.J.
        • et al.
        The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials.
        Lancet Oncol. 2013; 14: 1086-1094
        • Hill-Kayser C.E.
        • Vachani C.
        • Hampshire M.K.
        • Di Lullo G.A.
        • Metz J.M.
        Cosmetic outcomes and complications reported by patients having undergone breast-conserving treatment.
        Int J Radiat Oncol Biol Phys. 2012; 83: 839-844
        • Pignol J.P.
        • Truong P.
        • Rakovitch E.
        • Sattler M.G.
        • Whelan T.J.
        • Olivotto I.A.
        Ten years results of the Canadian breast intensity modulated radiation therapy (IMRT) randomized controlled trial.
        Radiother Oncol. 2016; 121: 414-419
        • Tortorelli G.
        • Di Murro L.
        • Barbarino R.
        • Cicchetti S.
        • Di Cristino D.
        • Falco M.D.
        • et al.
        Standard or hypofractionated radiotherapy in the postoperative treatment of breast cancer: a retrospective analysis of acute skin toxicity and dose inhomogeneities.
        BMC Cancer. 2013; 13: 230
        • Cozzi L.
        • Lohr F.
        • Fogliata A.
        • Franceschini D.
        • De Rose F.
        • Filippi A.R.
        • et al.
        Critical appraisal of the role of volumetric modulated arc therapy in the radiation therapy management of breast cancer.
        Radiat Oncol. 2017; 12: 200
        • Jensen C.A.
        • Roa A.M.A.
        • Johansen M.
        • Lund J.Å.
        • Frengen J.
        Robustness of VMAT and 3DCRT plans toward setup errors in radiation therapy of locally advanced left-sided breast cancer with DIBH.
        Phys Med. 2018; 45: 12-18
        • Virén T.
        • Heikkilä J.
        • Myllyoja K.
        • Koskela K.
        • Lahtinen T.
        • Seppälä J.
        Tangential volumetric modulated arc therapy technique for left-sided breast cancer radiotherapy.
        Radiat Oncol. 2015; 10: 79
        • Verbelen H.
        • Gebruers N.
        • Beyers T.
        • De Monie A.C.
        • Tjalma W.
        Breast edema in breast cancer patients following breast-conserving surgery and radiotherapy: a systematic review.
        Breast Cancer Res Treat. 2014; 147: 463-471
        • Back M.
        • Guerrieri M.
        • Wratten C.
        • Steigler A.
        Impact of radiation therapy on acute toxicity in breast conservation therapy for early breast cancer.
        Clin Oncol (R Coll Radiol). 2004; 16: 12-16
        • Greenhowe J.
        • Stephen C.
        • McClymont L.
        • Munnoch D.A.
        Breast oedema following free flap breast reconstruction.
        Breast. 2017; 34: 73-76
        • Nicolini G.
        • Fogliata A.
        • Clivio A.
        • Vanetti E.
        • Cozzi L.
        Planning strategies in volumetric modulated arc therapy for breast.
        Med Phys. 2011; 38: 4025-4031
        • Thomas S.J.
        • Hoole A.C.
        The effect of optimization on surface dose in intensity modulated radiotherapy (IMRT).
        Phys Med Biol. 2004; 49: 4919-4928
        • Thilmann C.
        • Grosser K.H.
        • Rhein B.
        • Zabel A.
        • Wannenmacher M.
        • Debus J.
        Virtual bolus for inversion radiotherapy planning in intensity-modulated radiotherapy of breast carcinoma within the scope of adjuvant therapy.
        Strahlenther Onkol. 2002; 178: 139-146
        • Rossi M.
        • Boman E.
        • Skyttä T.
        • Haltamo M.
        • Laaksomaa M.
        • Kapanen M.
        Dosimetric effects of anatomical deformations and positioning errors in VMAT breast radiotherapy.
        J Appl Clin Med Phys. 2018; 19: 506-516
        • Alderliesten T.
        • den Hollander S.
        • Yang T.J.
        • Elkhuizen P.H.
        • van Mourik A.M.
        • Hurkmans C.
        • et al.
        Dosimetric impact of post-operative seroma reduction during radiotherapy after breast-conserving surgery.
        Radiother Oncol. 2011; 100: 265-270
        • Zegers C.M.L.
        • Baeza J.A.
        • van Elmpt W.
        • Murrer L.H.P.
        • Verhoeven K.
        • Boersma L.
        • et al.
        Three-dimensional dose evaluation in breast cancer patients to define decision criteria for adaptive radiotherapy.
        Acta Oncol. 2017; 56: 1487-1494
        • Gonzalez E.A.
        • Saltzstein E.C.
        • Riedner C.S.
        • Nelson B.K.
        Seroma formation following breast cancer surgery.
        Breast J. 2003; 9: 385-388
        • Hille-Betz U.
        • Vaske B.
        • Bremer M.
        • Soergel P.
        • Kundu S.
        • Klapdor R.
        • et al.
        Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy: Risk-modifying factors.
        Strahlenther Onkol. 2016; 192: 8-16
        • Kim M.
        • Park I.H.
        • Lee K.S.
        • Ro J.
        • Jung S.Y.
        • Lee S.
        • et al.
        Breast Cancer-Related Lymphedema after Neoadjuvant Chemotherapy.
        Cancer Res Treat. 2015; 47: 416-423
        • Topolnjak R.
        • Sonke J.J.
        • Nijkamp J.
        • Rasch C.
        • Minkema D.
        • Remeijer P.
        • et al.
        Breast patient setup error assessment: comparison of electronic portal image devices and cone-beam computed tomography matching results.
        Int J Radiat Oncol Biol Phys. 2010; 78: 1235-1243
        • Laaksomaa M.
        • Kapanen M.
        • Skyttä T.
        • Peltola S.
        • Hyödynmaa S.
        • Kellokumpu-Lehtinen P.L.
        Estimation of optimal matching position for orthogonal kV setup images and minimal setup margins in radiotherapy of whole breast and lymph node areas.
        Rep Pract Oncol Radiother. 2014; 19: 369-375
        • Feng C.H.
        • Gerry E.
        • Chmura S.J.
        • Hasan Y.
        • Al-Hallaq H.A.
        An image-guided study of setup reproducibility of postmastectomy breast cancer patients treated with inverse-planned intensity modulated radiation therapy.
        Int J Radiat Oncol Biol Phys. 2015; 91: 58-64
        • Rossi M.
        • Boman E.
        • Kapanen M.
        Optimal selection of optimization bolus thickness in planning of VMAT breat cancer radiotherapy treatments.
        Med Dosim. 2018;Oct; : 30
        • Reitz D.
        • Carl G.
        • Schönecker S.
        • Pazos M.
        • Freislederer P.
        • Niyazi M.
        • et al.
        Real-time intra-fraction motion management in breast cancer radiotherapy: analysis of 2028 treatment sessions.
        Radiat Oncol. 2018; 13: 128
        • Thomsen M.S.
        • Harrov U.
        • Fledelius W.
        • Poulsen P.R.
        Inter- and intra-fraction geometric errors in daily image-guided radiotherapy of free-breathing breast cancer patients measured with continuous portal imaging.
        Acta Oncol. 2014; 53: 802-808
        • Honkanen J.T.J.
        • Loukkola M.
        • Seppala J.
        EP-2050: Geometrical uncertainties of humerus and breast in breast cancer radiotherapy.
        Radiother Oncol. 2018; 127: S1122
        • Kapanen M.
        • Laaksomaa M.
        • Skyttä T.
        • Haltamo M.
        • Pehkonen J.
        • Lehtonen T.
        • et al.
        Residual position errors of lymph node surrogates in breast cancer adjuvant radiotherapy: comparison of two arm fixation devices and the effect of arm position correction.
        Med Dosim. 2016; 41: 47-52
        • Lahtinen T.
        • Seppälä J.
        • Viren T.
        • Johansson K.
        Experimental and Analytical Comparisons of Tissue Dielectric Constant (TDC) and Bioimpedance Spectroscopy (BIS) in Assessment of Early Arm Lymphedema in Breast Cancer Patients after Axillary Surgery and Radiotherapy.
        Lymphat Res Biol. 2015; 13: 176-185