Advertisement
Original paper| Volume 64, P245-251, August 2019

Internal dosimetry for TARE therapies by means of GAMOS Monte Carlo simulations

  • Lucrezia Auditore
    Affiliations
    Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy

    Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy
    Search for articles by this author
  • Ernesto Amato
    Correspondence
    Corresponding author at: Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
    Affiliations
    Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy

    Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy
    Search for articles by this author
  • Antonio Italiano
    Affiliations
    Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy

    MIFT Department, University of Messina, Italy
    Search for articles by this author
  • Pedro Arce
    Affiliations
    Medical Applications Unit, Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas (CIEMAT), Madrid, Spain
    Search for articles by this author
  • Alfredo Campennì
    Affiliations
    Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy

    Nuclear Medicine Unit, University Hospital “G. Martino”, Messina, Italy
    Search for articles by this author
  • Sergio Baldari
    Affiliations
    Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy

    Nuclear Medicine Unit, University Hospital “G. Martino”, Messina, Italy
    Search for articles by this author
Published:August 02, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.07.024

      Highlights

      • A dosimetric study of 7 cases of TARE treatments with 90Y microspheres is presented.
      • Monte Carlo calculated doses agree with convolution and MIRD results.
      • 3D dose maps, dose profiles and DVHs were compared.
      • Lung doses at liver/lung interface are significantly affected by liver irradiation.

      Abstract

      Three-dimensional internal dosimetry is increasingly used in planning Trans-Arterial Radio-Embolization (TARE) of HepatoCellular Carcinoma (HCC). Among the existing calculation approaches, Monte Carlo (MC) simulation is the gold standard. Aim of this work was to carry out a retrospective study of clinical cases of TARE to compare the performances of different computation approaches. We developed a procedure exploiting GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations) MC. Three dimensional absorbed dose maps, dose profiles and Dose Volume Histograms (DVHs) were produced for liver through MC simulations and convolution method implemented in STRATOS software. We compared the average absorbed doses with results of Medical International Radiation Dose (MIRD) approach.
      For most patients, a reasonable agreement was found, with relative differences in mean doses within (−20.2%,+15.6%) for MIRD vs. MC and (−12.1%, +7.6%) for STRATOS vs. MC. Discrepancies can mainly be related to the gamma-rays contribution, more precisely taken into account in MC.
      For one patient we evaluated through MC simulation a lung dose of about 2 Gy coming from pulmonary shunt (96%) and from irradiation from liver (4%), with values up to 4.5 Gy near liver-lung interface.
      3D dosimetry for TARE treatments can be satisfactorily carried out with convolution methods as long as VOIs of regular shape are considered. MC simulations are more appropriate for VOIs where the contribution from gamma-rays has to be carefully taken into account. The absorbed dose distribution in presence of relevant tissue inhomogeneities can be assessed accurately by means of MC simulations only.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stokke C.
        • Gabiña P.M.
        • Solný P.
        • Cicone F.
        • Sandström M.
        • Gleisner K.S.
        • et al.
        Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force.
        EJNMMI Phys. 2017; 4: 27https://doi.org/10.1186/s40658-017-0194-3
        • Li T.
        • Ao E.C.I.
        • Lambert B.
        • Brans B.
        • Vandenberghe S.
        • Mok G.S.P.
        Quantitative imaging for targeted radionuclide therapy dosimetry – technical review.
        Theranostics. 2017; 7: 4551-4565https://doi.org/10.7150/thno.19782
        • Strigari L.
        • Konijnenberg M.
        • Chiesa C.
        • Bardies M.
        • Du Y.
        • Gleisner K.S.
        • et al.
        The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1976-1988https://doi.org/10.1007/s00259-014-2824-5
        • Pacilio M.
        • Amato E.
        • Lanconelli N.
        • Basile C.
        • Torres L.A.
        • Botta F.
        • et al.
        Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT.
        Phys Med Biol. 2015; 60: 1945-1964https://doi.org/10.1088/0031-9155/60/5/1945
        • Amato E.
        • Cicone F.
        • Auditore L.
        • Baldari S.
        • Prior J.O.
        • Gnesin S.
        A Monte Carlo model for the internal dosimetry of choroid plexuses in nuclear medicine procedures.
        Phys Medica. 2018; 49: 52-57https://doi.org/10.1016/j.ejmp.2018.05.005
        • Amato E.
        • Minutoli F.
        • Pacilio M.
        • Campennì A.
        • Baldari S.
        An analytical method for computing voxel S values for electrons and photons.
        Med Phys. 2012; 39: 6808-6817https://doi.org/10.1118/1.4757912
        • Giap H.B.
        • Macey D.J.
        • Bayouth J.E.
        • Boyer A.L.
        Validation of a dose-point kernel convolution technique for internal dosimetry.
        Phys Med Biol. 1995; 40: 365-381https://doi.org/10.1088/0031-9155/40/3/003
        • Dieudonné A.
        • Garin E.
        • Laffont S.
        • Rolland Y.
        • Lebtahi R.
        • Leguludec D.
        • et al.
        Clinical feasibility of fast 3-dimensional dosimetry of the liver for treatment planning of hepatocellular carcinoma with 90Y-microspheres.
        J Nucl Med. 2011; 52: 1930-1937https://doi.org/10.2967/jnumed.111.095232
        • Kafrouni M.
        • Allimant C.
        • Fourcade M.
        • Vauclin S.
        • Delicque J.
        • Ilonca A.-D.
        • et al.
        Retrospective voxel-based dosimetry for assessing the ability of the body-surface-area model to predict delivered dose and radioembolization outcome.
        J Nucl Med. 2018; 59: 1289-1295https://doi.org/10.2967/jnumed.117.202937
        • Amato E.
        • Italiano A.
        • Baldari S.
        Monte Carlo study of voxel S factor dependence on tissue density and atomic composition.
        Nucl Instruments Methods Phys Res Sect A. 2013; 729: 870-876https://doi.org/10.1016/j.nima.2013.08.059
        • Khazaee Moghadam M.
        • Kamali Asl A.
        • Geramifar P.
        • Zaidi H.
        Evaluating the application of tissue-specific dose kernels instead of water dose kernels in internal dosimetry: a Monte Carlo study.
        Cancer Biother Radiopharm. 2016; 31: 367-379https://doi.org/10.1089/cbr.2016.2117
        • Sanchez-Garcia M.
        • Gardin I.
        • Lebtahi R.
        • Dieudonné A.
        Implementation and validation of collapsed cone superposition for radiopharmaceutical dosimetry of photon emitters.
        Phys Med Biol. 2015; 60: 7861-7876https://doi.org/10.1088/0031-9155/60/20/7861
        • Bolch W.E.
        • Bouchet L.G.
        • Robertson J.S.
        • Wessels B.W.
        • Siegel J.A.
        • Howell R.W.
        • et al.
        MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee.
        J Nucl Med. 1999; 40: 11S-36S
        • Furhang E.E.
        • Chui C.S.
        • Kolbert K.S.
        • Larson S.M.
        • Sgouros G.
        Implementation of a Monte Carlo dosimetry method for patient-specific internal emitter therapy.
        Med Phys. 1997; 24: 1163-1172https://doi.org/10.1118/1.598018
        • Yoriyaz H.
        • Stabin M.G.
        • dos Santos A.
        Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.
        J Nucl Med. 2001; 42: 662-669
        • Ljungberg M.
        • Sjögreen K.
        • Liu X.
        • Frey E.
        • Dewaraja Y.
        • Strand S.-E.
        A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for 131 i using Monte Carlo simulation.
        J Nucl Med. 2002; 43: 1101-1109
        • Marcatili S.
        • Pettinato C.
        • Daniels S.
        • Lewis G.
        • Edwards P.
        • Fanti S.
        • et al.
        Development and validation of RAYDOSE: a Geant4-based application for molecular radiotherapy.
        Phys Med Biol. 2013; 58: 2491-2508https://doi.org/10.1088/0031-9155/58/8/2491
        • Grimes J.
        • Uribe C.
        • Celler A.
        JADA: A graphical user interface for comprehensive internal dose assessment in nuclear medicine.
        Med Phys. 2013; 40072501https://doi.org/10.1118/1.4810963
        • Kost S.D.
        • Dewaraja Y.K.
        • Abramson R.G.
        • Stabin M.G.
        VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4.
        Cancer Biother Radiopharm. 2015; 30: 16-26https://doi.org/10.1089/cbr.2014.1713
        • Besemer A.E.
        • Yang Y.M.
        • Grudzinski J.J.
        • Hall L.T.
        • Bednarz B.P.
        Development and validation of RAPID: a patient-specific Monte Carlo three-dimensional internal dosimetry platform.
        Cancer Biother Radiopharm. 2018; 33: 155-165https://doi.org/10.1089/cbr.2018.2451
        • Petitguillaume A.
        • Bernardini M.
        • Hadid L.
        • De Labriolle-Vaylet C.
        • Franck D.
        • Desbrée A.
        Three-dimensional personalized Monte Carlo dosimetry in 90Y resin microspheres therapy of hepatic metastases: nontumoral liver and lungs radiation protection considerations and treatment planning optimization.
        J Nucl Med. 2014; 55: 405-413https://doi.org/10.2967/jnumed.113.120444
        • Hashikin N.A.A.
        • Yeong C.H.
        • Guatelli S.
        • Abdullah B.J.J.
        • Ng K.H.
        • Malaroda A.
        • et al.
        Systematic investigation on the validity of partition model dosimetry for 90Y radioembolization using Monte Carlo simulation.
        Phys Med Biol. 2017; 62: 7342-7356https://doi.org/10.1088/1361-6560/aa7e5b
        • Ho S.
        • Lau W.Y.
        • Lung T.W.T.
        • Chan M.
        • Ngar Y.K.
        • Johnson P.J.
        • et al.
        Partition model for estimating radiation doses from Yttrium-90 microspheres in treating hepatic tumors.
        Eur J Nucl Med. 1996; 23: 947-952https://doi.org/10.1007/BF01084369
        • Chiesa C.
        • Mira M.
        • Maccauro M.
        • Spreafico C.
        • Romito R.
        • Morosi C.
        • et al.
        Radioembolization of hepatocarcinoma with 90Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology.
        Eur J Nucl Med Mol Imaging. 2015; 42: 1718-1738https://doi.org/10.1007/s00259-015-3068-8
        • Gulec S.A.
        • Mesoloras G.
        • Stabin M.
        Dosimetric techniques in 90Y-microsphere therapy of liver cancer: the MIRD equations for dose calculations.
        J Nucl Med. 2006; 47: 1209-1211
        • Arce P.
        • Rato P.
        • Cañadas M.
        • Gamos Lagares J.I.
        A GEANT4-based easy and flexible framework for nuclear medicine applications.
        IEEE Nucl Sci Symp Conf Rec. 2008; : 3162-3168https://doi.org/10.1109/NSSMIC.2008.4775023
        • Agostinelli S.
        • et al.
        Geant4 – a simulation toolkit.
        Nucl Instrum Methods A. 2003; 506: 250-303https://doi.org/10.1016/S0168-9002(03)01368-8
        • Allison J.
        • et al.
        Geant4 developments and applications.
        IEEE Trans Nucl Sci. 2006; 53: 270-278
        • Allison J.
        • et al.
        Recent developments in Geant4.
        Nucl Instrum Meth A. 2016; 835: 186-225
        • Paulus T.
        • Fischer A.
        • van Loon P.
        • Schweizer B.
        • Gegenmantel E.
        • Bippus R.
        IMALYTICS: the philips translational and research workstation.
        Medicamundi. 2010; 54: 78-81
        • Bolch W.E.
        • Eckerman K.F.
        • Sgouros G.
        • Thomas S.R.
        • Brill A.B.
        • Fisher D.R.
        • et al.
        MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature.
        J Nucl Med. 2009; 50: 477-484https://doi.org/10.2967/jnumed.108.056036
      1. Geant4 Reference Physics Manual, version geant4 10.3, n.d. http://geant4.cern.ch.

      2. ENSDF, Evaluated Nuclear Structure Data File, Maint. by Natl. Nucl. Data Cent. Brookhaven Natl. Lab. (n.d.). http://www.nndc.bnl.gov/ensdf/.

      3. Tuli J, Evaluated nuclear structure data file, BNL-NCS-51655-Rev87; 1987.

        • Berenato S.
        • Amato E.
        • Fischer A.
        • Baldari S.
        Influence of voxel S factors on three-dimensional internal dosimetry calculations.
        Phys Medica. 2016; 32: 1259-1262
        • Bouchet L.G.
        • Bolch W.E.
        • Weber D.A.
        • Atkins H.L.
        • Poston Sr., J.W.
        MIRD Pamphlet No. 15: radionuclide S values in a revised dosimetric model of the adult head and brain. Medical Internal Radiation Dose.
        J Nucl Med. 1999; 40: 62S-101S
        • Chiavassa S.
        • Aubineau-Lanièce I.
        • Bitar A.
        • et al.
        Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code.
        Phys Med Biol. 2006; 51: 601-616
        • Pelowitz D.B.
        MCNPX User’s manual version 2.6.0. Technical report LA-CP-05-0369.
        Alamos National Laboratory, Los Alamos, NM: Los2008
        • Braad P.E.N.
        • Andersen T.
        • Hansen S.B.
        • Høilund-Carlsen P.F.
        Strategies for CT tissue segmentation for Monte Carlo calculations in nuclear medicine dosimetry: strategies for CT tissue segmentation for Monte Carlo calculations.
        Med Phys. 2016; 43: 6507-6516
        • Rhee S.
        • Kim S.
        • Cho J.
        • Park J.
        • Eo J.S.
        • Park S.
        • et al.
        Semi-quantitative analysis of post-transarterial radioembolization 90Y microsphere positron emission tomography combined with computed tomography (PET/CT) images in advanced liver malignancy: comparison with 99mTc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT).
        Nucl Med Mol Imaging. 2016; 50: 63-69