Advertisement

Attenuation correction of a flat table top for radiation therapy in hybrid PET/MR using CT- and 68Ge/68Ga transmission scan-based μ-maps

  • Author Footnotes
    1 Both authors contributed equally to this work.
    Stephan Witoszynskyj
    Footnotes
    1 Both authors contributed equally to this work.
    Affiliations
    Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally to this work.
    Piotr Andrzejewski
    Footnotes
    1 Both authors contributed equally to this work.
    Affiliations
    Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria

    Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
    Search for articles by this author
  • Dietmar Georg
    Affiliations
    Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria

    Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
    Search for articles by this author
  • Marcus Hacker
    Affiliations
    Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
    Search for articles by this author
  • Tufve Nyholm
    Affiliations
    Department of Radiation Sciences, Umeå University, SE-90187 Umeå, Sweden
    Search for articles by this author
  • Ivo Rausch
    Affiliations
    Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
    Search for articles by this author
  • Barbara Knäusl
    Correspondence
    Corresponding author at: Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.
    Affiliations
    Department of Radiotherapy, Comprehensive Cancer Center, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria

    Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
    Search for articles by this author
  • Author Footnotes
    1 Both authors contributed equally to this work.
Published:August 19, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.08.005

      Highlights

      • The MR image quality is not hampered by the presence of the flat table top.
      • A dedicated hardware μ-map has to be used for attenuation correction to improve quality of PET images.
      • Transmission scan and CT based μ-maps performed equally good as basis for flat table top attenuation correction.

      Abstract

      Hybrid PET/MR offers new opportunities in radiation oncology for tissue/tumour characterisation and response assessment. Attenuation correction (AC) is an important issue especially in the presence of immobilization devices and flat table tops (FTT). The goal of this study was to compare two methods of AC using CT- and 68Ge/68Ga transmission scan-based attenuation maps (μ-maps) for a custom-designed FTT. Measurements were performed in the mMR PET/MR and TrueV PET/CT Biograph Siemens scanners with three different phantoms, namely the Siemens MR-QA, a cubic canister and the NEMA IEC body phantom. The study revealed that the MR image quality is not hampered by the presence of the FTT. For cubic canister applying the scanner’s inherent AC alone resulted in inaccuracies in PET images, with up to −4.0% underestimation of the activity. The mean NEMA sphere activity measurements without FTT, agreed within 3.5% with the respective inserted activity. Placing the FTT in the PET/MR scanner resulted in a difference to the injected activity of 4.5% when the table was not corrected for. By introducing the μ-maps the discrepancy between the used activity and the measurements decreased down to 2.6%. To improve the AC of the FTT the creation of a dedicated μ-map was necessary while the CT-based μ-map performed equally good as the source transmission scan-based one.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bailey D.L.
        • Pichler B.J.
        • Gückel B.
        • Barthel H.
        • Beer A.J.
        • Bremerich J.
        • et al.
        Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here: Summary Report of the 4th International Workshop on PET/MR Imaging; February 23–27, 2015, Tübingen, Germany.
        Mol Imaging Biol. 2015; 17: 595-608https://doi.org/10.1007/s11307-015-0886-9
        • Bailey D.L.
        • Barthel H.
        • Beyer T.
        • Boellaard R.
        • Gückel B.
        • Hellwig D.
        • et al.
        Summary report of the first international workshop on PET/MR imaging, March 19–23, 2012, Tübingen, Germany.
        Mol Imaging Biol. 2013; 15: 361-371https://doi.org/10.1007/s11307-013-0623-1
        • Bailey D.L.
        • Barthel H.
        • Beuthin-Baumann B.
        • Beyer T.
        • Bisdas S.
        • Boellaard R.
        • et al.
        Combined PET/MR: Where are we now? Summary report of the Second International Workshop on PET/MR Imaging April 8–12, 2013, Tübingen, Germany.
        Mol Imaging Biol. 2014; 16: 295-310https://doi.org/10.1007/s11307-014-0725-4
        • Bailey D.L.
        • Pichler B.J.
        • Gückel B.
        • Barthel H.
        • Beer A.J.
        • Botnar R.
        • et al.
        Combined PET/MRI: from Status Quo to Status Go. Summary Report of the Fifth International Workshop on PET/MR Imaging; February 15-19, 2016; Tübingen, Germany.
        Mol Imaging Biol. 2016; 18: 637-650https://doi.org/10.1007/s11307-016-0993-2
        • Bailey D.L.
        • Antoch G.
        • Bartenstein P.
        • Barthel H.
        • Beer A.J.
        • Bisdas S.
        • et al.
        Combined PET/MR: The Real Work Has Just Started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17–21, 2014, Tübingen, Germany.
        Mol Imaging Biol. 2015; 17: 297-312https://doi.org/10.1007/s11307-014-0818-0
        • Herzog H.
        • Pietrzyk U.
        • Shah N.J.
        • Ziemons K.
        The current state, challenges and perspectives of MR-PET.
        Neuroimage. 2010; https://doi.org/10.1016/j.neuroimage.2009.10.036
        • Georg P.
        • Andrzejewski P.
        • Baltzer P.
        • Daniel M.
        • Wadsak W.
        • Mitterhauser M.
        • et al.
        Changes in Tumor Biology During Chemoradiation of Cervix Cancer Assessed by Multiparametric MRI and Hypoxia PET.
        Mol Imaging Biol. 2017; https://doi.org/10.1007/s11307-017-1087-5
        • Daniel M.
        • Andrzejewski P.
        • Sturdza A.
        • Majercakova K.
        • Baltzer P.
        • Pinker K.
        • et al.
        Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer.
        Radiother Oncol. 2017; 125https://doi.org/10.1016/j.radonc.2017.10.036
        • Sawicki L.M.
        • Grueneisen J.
        • Schaarschmidt B.M.
        • Buchbender C.
        • Nagarajah J.
        • Umutlu L.
        • et al.
        Evaluation of 18F-FDG PET/MRI, 18F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer.
        Eur J Radiol. 2016; 85: 459-465https://doi.org/10.1016/j.ejrad.2015.12.010
        • Spick C.
        • Herrmann K.
        • Czernin J.
        18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients.
        J Nucl Med. 2016; 57: 420-430https://doi.org/10.2967/jnumed.115.158808
        • Schaarschmidt B.M.
        • Heusch P.
        • Buchbender C.
        • Ruhlmann M.
        • Bergmann C.
        • Ruhlmann V.
        • et al.
        Locoregional tumour evaluation of squamous cell carcinoma in the head and neck area: a comparison between MRI, PET/CT and integrated PET/MRI.
        Eur J Nucl Med Mol Imaging. 2016; 43: 92-102https://doi.org/10.1007/s00259-015-3145-z
        • Eiber M.
        • Weirich G.
        • Holzapfel K.
        • Souvatzoglou M.
        • Haller B.
        • Rauscher I.
        • et al.
        Simultaneous68Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer.
        Eur Urol. 2016; 70: 829-836https://doi.org/10.1016/j.eururo.2015.12.053
        • Sotoudeh H.
        • Sharma A.
        • Fowler K.J.
        • McConathy J.
        • Dehdashti F.
        Clinical application of PET/MRI in oncology.
        J Magn Reson Imaging. 2016; 44: 265-276https://doi.org/10.1002/jmri.25161
        • Fraum T.J.
        • Fowler K.J.
        • McConathy J.
        • Parent E.E.
        • Dehdashti F.
        • Grigsby P.W.
        • et al.
        PET/MRI for the body imager: abdominal and pelvic oncologic applications.
        Abdom Imaging. 2015; 40: 1387-1404https://doi.org/10.1007/s00261-015-0390-3
        • Lindenberg L.
        • Ahlman M.
        • Turkbey B.
        • Mena E.C.P.
        Advancement of MR and PET/MR in prostate cancer.
        Semin Nucl Med. 2016; : 536-543
        • Freitag M.T.
        • Radtke J.P.
        • Hadaschik B.A.
        • Kopp-Schneider A.
        • Eder M.
        • Kopka K.
        • et al.
        Comparison of hybrid 68Ga-PSMA PET/MRI and 68Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer.
        Eur J Nucl Med Mol Imaging. 2016; 43: 70-83https://doi.org/10.1007/s00259-015-3206-3
        • Deuschl C.
        • Kirchner J.
        • Poeppel T.D.
        • Schaarschmidt B.
        • Kebir S.
        • El Hindy N
        • et al.
        11C-MET PET/MRI for detection of recurrent glioma.
        Eur J Nucl Med Mol Imaging. 2018; 45: 593-601https://doi.org/10.1007/s00259-017-3916-9
        • Grueneisen
        Positron emission tomography/magnetic resonance imaging for local tumor staging in patients with primary breast cancer.
        Invest Radiol. 2015; 50: 1-9https://doi.org/10.1097/RLI.0000000000000197
        • Paulino A.C.
        • Thorstad W.L.
        • Fox T.
        Role of fusion in radiotherapy treatment planning.
        Semin Nucl Med. 2003; https://doi.org/10.1053/snuc.2003.127313
        • Thorwarth D.
        • Leibfarth S.
        • Mönnich D.
        Potential role of PET/MRI in radiotherapy treatment planning.
        Clin Transl Imaging. 2013; https://doi.org/10.1007/s40336-013-0006-2
        • Thorwarth D.
        • Geets X.
        • Paiusco M.
        Physical radiotherapy treatment planning based on functional PET/CT data.
        Radiother Oncol. 2010; https://doi.org/10.1016/j.radonc.2010.07.012
        • Thorwarth D.
        Functional imaging for radiotherapy treatment planning: current status and future directions — a review.
        Br J Radiol. 2015; 88: 20150056https://doi.org/10.1259/bjr.20150056
        • Thorwarth D.
        • Notohamiprodjo M.
        • Zips D.
        • Müller A.C.
        Personalized precision radiotherapy by integration of multi-parametric functional and biological imaging in prostate cancer: a feasibility study.
        Z Med Phys. 2015; 27: 21-30https://doi.org/10.1016/j.zemedi.2016.02.002
        • Leibfarth S.
        • Mönnich D.
        • Welz S.
        • Siegel C.
        • Schwenzer N.
        • Schmidt H.
        • et al.
        A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning.
        Acta Oncol (Madr). 2013; 52: 1353-1359https://doi.org/10.3109/0284186X.2013.813964
        • van der Heide U.A.
        • Houweling A.C.
        • Groenendaal G.
        • Beets-Tan R.G.H.
        • Lambin P.
        Functional MRI for radiotherapy dose painting.
        Magn Reson Imaging. 2012; 30: 1216-1223https://doi.org/10.1016/j.mri.2012.04.010
        • Paulus D.H.
        • Thorwath D.
        • Schmidt H.
        • Quick H.H.
        Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning.
        Med Phys. 2014; 41: 72505https://doi.org/10.1118/1.4881317
        • Kuess P.
        • Andrzejewski P.
        • Nilsson D.
        • Georg P.
        • Knoth J.
        • Susani M.
        • et al.
        Association between pathology and texture features of multi parametric MRI of the prostate.
        Phys Med Biol. 2017; 62https://doi.org/10.1088/1361-6560/aa884d
        • Edmund J.M.
        • Nyholm T.
        A review of substitute CT generation for MRI-only radiation therapy.
        Radiat Oncol. 2017; 12: 1-15https://doi.org/10.1186/s13014-016-0747-y
        • Karlsson M.
        • Karlsson M.G.
        • Nyholm T.
        • Amies C.
        • Zackrisson B.
        Dedicated magnetic resonance imaging in the radiotherapy clinic.
        Int J Radiat Oncol Biol Phys. 2009; 74: 644-651https://doi.org/10.1016/j.ijrobp.2009.01.065
        • Martinez-Möller A.
        • Souvatzoglou M.
        • Delso G.
        • Bundschuh R.A.
        • Chefd’hotel C.
        • Ziegler S.I.
        • et al.
        Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data.
        J Nucl Med. 2009; 50: 520-526https://doi.org/10.2967/jnumed.108.054726
        • Delso G.
        • Martinez-Oller A.
        • Bundschuh R.A.
        • Ladebeck R.
        • Candidus Y.
        • Faul D.
        • et al.
        Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner.
        Phys Med Biol. 2010; 55: 4361-4374
        • Hofmann M.
        • Bezrukov I.
        • Mantlik F.
        • Aschoff P.
        • Steinke F.
        • Beyer T.
        • et al.
        MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation-and atlas-based methods.
        J Nucl Med. 2011; 52: 1392-1399https://doi.org/10.2967/jnumed.110.078949
        • Ziegler S.
        • Jakoby B.W.
        • Braun H.
        • Paulus D.H.
        • Quick H.H.
        NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging. EJNMMI.
        Physics. 2015; 2https://doi.org/10.1186/s40658-015-0122-3
        • Bezrukov I.
        • Mantlik F.
        • Schmidt H.
        • Schölkopf B.
        • Pichler B.J.
        MR-based PET attenuation correction for PET/MR imaging.
        Semin Nucl Med. 2013; https://doi.org/10.1053/j.semnuclmed.2012.08.002
        • Wollenweber S.D.
        • Delso G.
        • Deller T.
        • Goldhaber D.
        • Hüllner M.
        • Veit-Haibach P.
        Characterization of the impact to PET quantification and image quality of an anterior array surface coil for PET/MR imaging.
        Magn Reson Mater Physics, Biol Med. 2014; 27: 149-159https://doi.org/10.1007/s10334-013-0388-1
        • Cho I.
        • Kong E.
        • Chun K.
        Image artifacts from MR-based attenuation correction in dedicated PET/MR breast coil for PET/MR mammography.
        Cho Al EJNMMI Phys. 2015; 2: 17-21https://doi.org/10.1186/2197-7364-2-S1-A62
        • Paulus D.
        • Quick H.
        Hybrid positron emission tomography/magnetic resonance imaging.
        Invest Radiol. 2016; 51: 624-634https://doi.org/10.1097/RLI.0000000000000289
        • Eldib M.
        • Bini J.
        • Robson P.
        • Calcagno C.
        • Faul D.
        • Tsoumpas C.
        • et al.
        Markless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging.
        Phys Med Biol. 2015; 60: 4705-4717https://doi.org/10.3109/10253890.2015.1094689.Post-Traumatic
        • Fenchel M.
        Biograph mMR support of customer defined hardware µ-maps whitepaper.
        Siemens Healthc AG. 2011; (PLM0077-G:1–11)
        • Koesters T.
        • Laforest R.
        • Faul D.
        Customer documentation e7-tools for siemens biograph mMR SW version VA20.
        Siemens Healthc AG. 2014; : 1-17
        • Quick H.H.
        Integrated PET/MR.
        J Magn Reson Imaging. 2014; https://doi.org/10.1002/jmri.24523
        • Paulus D.
        • Tellmann Quick
        Towards improved hardware component attenuation correction in PET/MR hybrid imaging.
        Phys Med Biol. 2013; 58: 8021https://doi.org/10.1088/0031-9155/58/22/8021
        • Tellmann L.
        • Quick H.H.
        • Bockisch A.
        • Herzog H.
        Beyer TT. The effect of MR surface coilson PET quantification in whole-body PET/MR: results from a pseudo-PET/MR phantom study.
        Med. Phys. 2011; 38: 2795-2805
        • MacDonald L.R.
        • Kohlmyer S.
        • Liu C.
        • Lewellen T.K.
        • Kinahan P.E.
        Effects of MR surface coils on PETquantification.
        Med. Phys. 2011; 38: 2948-2956
        • Carney J.P.J.
        • Townsend D.W.
        • Rappoport V.
        • Bendriem B.
        Method for transforming CT images for attenuation correction in PET/CT imaging.
        Med Phys. 2006; 33: 976-983https://doi.org/10.1118/1.2174132
        • Kartmann R.
        • Paulus D.H.
        • Braun H.
        • Aklan B.
        • Ziegler S.
        • Navalpakkam B.K.
        • et al.
        Integrated PET/MR imaging: Automatic attenuation correction of flexible RF coils.
        Med Phys. 2013; 40https://doi.org/10.1118/1.4812685
        • Eldib M.
        • Bini J.
        • Calcagno Þ.C.
        • Robson P.M.
        • Mani V.
        • Fayad Z.A.
        Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomographic.
        Imaging. 2013; 49
      1. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance Measurements of the Siemens mMR Integrated Whole-Body PET/MR Scanner n.d. doi: 10.2967/jnumed.111.092726.

        • Paulus D.H.
        • Oehmigen M.
        • Grüneisen J.
        • Umutlu L.
        • Quick H.H.
        Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning.
        Phys Med Biol. 2016; 61: 3504-3520https://doi.org/10.1088/0031-9155/61/9/3504
        • Paulus D.H.
        • Braun H.
        • Aklan B.
        • Quick H.H.
        Simultaneous PET/MR Hybrid Imaging : MR-based Attenuation Correction of Flexible Radiofrequency Surface Coils.
        Med Phys. 2012; 39: 4306-4315https://doi.org/10.1118/1.4729716
        • Delso G.
        • Martinez-Möller A.
        • Bundschuh R.A.
        • Nekolla S.G.
        • Ziegler S.I.
        The effect of limited MR field of view in MR/PET attenuation correction.
        Med Phys. 2010; 37: 2804-2812https://doi.org/10.1118/1.3431576
        • Tropp J.
        Image brightening in samples of high dielectric constant.
        J Magn Reson. 2004; 167: 12-24https://doi.org/10.1016/j.jmr.2003.11.003
        • Heußer T.
        • Mann P.
        • Rank C.M.
        • Scha M.
        • Dimitrakopoulou-strauss A.
        • Schlemmer H.
        • et al.
        Investigation of the halo-artifact in 68 Ga-PSMA-11-PET/MRI.
        PLoS ONE. 2017; : 1-19
        • Karlberg A.M.
        • Sæther O.
        • Eikenes L.
        • Goa P.E.
        Quantitative comparison of PET performance—siemens biograph mCT and mMR.
        EJNMMI Phys. 2016; 3https://doi.org/10.1186/s40658-016-0142-7