Advertisement
Original paper| Volume 65, P114-120, September 2019

Download started.

Ok

Characterization of scintillating fibers for use as positron detector in positron emission tomography

Published:August 23, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.08.009

      Highlights

      • Coupling scintillating and optical fibers doesn’t affect the attenuation length.
      • Bending the scintillating fibers won’t degrade the signal in clinical applications.
      • As expected, the detector is more sensitive to positrons from 11C than 18F.
      • The detector can accurately measure the decay of 11C.

      Abstract

      Purpose

      Manual and automatic blood sampling at different time intervals is considered the gold standard to determine the arterial input function (AIF) in dynamic positron emission tomography (PET). However, blood sampling is characterized by poor time resolution and is an invasive procedure. The aim of this study was to characterize the scintillating fibers used to develop a non-invasive positron detector.

      Methods

      The detector consists of a scintillating fiber coupled at each end to transmission fiber-optic cables that are connected to photo multiplier tubes in a dual readout setup. The detector is designed to be wrapped around the wrist of the patient undergoing dynamic PET. The attenuation length and bending losses were measured with excitation from gamma radiation (137Cs) and ultraviolet (UV) light. The response to positron-emitting radio-tracers was evaluated with 18F and 11C.

      Results

      The attenuation length for a 3.0 m and 1.5 m long scintillating fiber both coincides with the attenuation length given by the manufacturer when excited with the 137Cs source, but not with the UV source due to the differences in scintillation mechanisms. The bending losses are smaller than the measurement uncertainty for the 137Cs source irradiation, and increase when the bending radius decrease for the UV source irradiation. The signal-to-noise ratio for 18F and 11C solutions are 1.98 and 22.54 respectively. The measured decay constant of 11C agrees with its characteristic value.

      Conclusion

      The performed measurements in the dual readout configuration suggest that scintillating fibers may be suitable to determine the AIF non-invasively.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Erlandsson K.
        Tracer Kinetic Modeling: Basics and Concepts.
        in: Basic Sciences of Nuclear Medicine. Springer, Berlin Heidelberg, Berlin, Heidelberg2010: 333-351https://doi.org/10.1007/978-3-540-85962-8_16
        • Litton J.E.
        • Eriksson L.
        Transcutaneous measurement of the arterial input function in positron emission tomography.
        IEEE Trans Nucl Sci. 1990; 37: 627-628
        • Watabe H.
        • Miyake M.
        • Narita Y.
        • Nakamura T.
        • Itoh M.
        Development of skin surface radiation detector system to monitor radioactivity in arterial blood along with positron emission tomography.
        IEEE Trans Nucl Sci. 1995; 42 (URL:  http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=467729): 1455-1459https://doi.org/10.1109/23.467729
        • Yamamoto S.
        • Higashi T.
        • Matsumoto K.
        • Senda M.
        Preliminary study for the development of a tweezers-type coincidence detector for tumor detection.
        Nucl Instrum Methods Phys Res, Section A. 2005; 548: 564-570https://doi.org/10.1016/j.nima.2005.04.068
        • Villanueva A.
        • Stoll S.
        • Schlyer D.
        • Shokouhi S.
        • Vaska P.
        • Woody C.
        • et al.
        Spatial resolution of a noninvasive measurement of the arterial and venous input function using a wrist monitor.
        in: 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). 0-7803-8257-9 IEEE, 2003: 2232-2236https://doi.org/10.1109/NSSMIC.2003.1352343 (URL: http://ieeexplore.ieee.org/document/1352343/ papers2://publication/uuid/B017D670-72E1-45FF-AFF5-DB0D302C5A03)
        • Kriplani A.
        • Stoll S.P.
        • Southekal S.
        • Schlyer D.J.
        • Park S.J.
        • Villanueva A.
        • et al.
        Noninvasive high-resolution detection of the arterial and venous input function through a PET Wrist Scanner.
        IEEE Nucl Sci Symp Conf Record. 2005; 4: 2240-2244https://doi.org/10.1109/NSSMIC.2005.1596780
        • Kriplani A.
        • Schlyer D.
        • Vaska P.
        • Stoll S.
        • Southekal S.
        • Park S.
        • et al.
        Non-invasive and selective measurement of the arterial input function using a PET Wrist Scanner.
        in: 2006 IEEE Nuclear Science Symposium Conference Record. 2006: 3266-3270https://doi.org/10.1109/NSSMIC.2006.353705 (URL:L  http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4179747)
        • Champion C.
        • Le Loirec C.
        Positron follow-up in liquid water: II. Spatial and energetic study for the most important radioisotopes used in PET.
        Physics in Medicine and Biology. 2007; 52 (URL:  http://stacks.iop.org/0031-9155/52/i=22/a=004?key=crossref.1daf17f2e1836466fb122a3a39da746d): 6605-6625https://doi.org/10.1088/0031-9155/52/22/004
        • Lee D.
        • Kim J.Y.
        • Kim H.S.
        • Lee K.C.
        • Lee S.J.
        • Kwak H.J.
        Ultrasound evaluation of the radial artery for arterial catheterization in healthy anesthetized patients.
        J Clinical Monit Comput. 2016; 30: 215-219https://doi.org/10.1007/s10877-015-9704-9
        • Chichester D.L.
        • Watson S.M.
        • Johnson J.T.
        Comparison of bcf-10, bcf-12, and bcf-20 scintillating fibers for use in a 1-dimensional linear sensor.
        IEEE Trans Nucl Sci. 2013; 60: 4015-4021https://doi.org/10.1109/TNS.2013.2277799
        • Antonelli A.
        • Antonelli M.
        • Barbiellini G.
        Measurements of light yield, attenuation length and time response of long samples of blue scintillating fibers.
        Nucl Instrum Methods Phys Res, Section A. 1996; 370: 367-371https://doi.org/10.1016/0168-9002(95)00806-3
        • Archambault L.
        • Arsenault J.
        • Gingras L.
        • Beddar A.S.
        • Roy R.
        • Beaulieu L.
        Plastic scintillation dosimetry: optimal selection of scintillating fibers and scintillators.
        Med Phys. 2005; 32: 2271-2278https://doi.org/10.1118/1.1943807
      1. Knoll GF Radiation Detection and Measurement; vol. 3. 2000. ISBN 9780470131480. URL: http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001606, descCd-OVERVIEW.html. DOI: 10.1017/CBO9781107415324.004.

        • Beddar S.
        • Law S.
        • Suchowerska N.
        • Mackie T.R.
        Plastic scintillation dosimetry: optimization of light collection efficiency.
        Phys Med Biol. 2003; 48 (URL:  http://www.ncbi.nlm.nih.gov/pubmed/12765328): 1141-1152https://doi.org/10.1088/0031-9155/48/9/305
        • Chung M.
        • Margulies S.
        Effects of stress and strain on scintillating and clear fibers.
        IEEE Tran Nucl Sci. 1995; 42: 323-327
      2. Hubbell J, Seltzer S. NIST: X-Ray Mass Attenuation Coefficients; 1996. URL:  http://www.nist.gov/pml/data/xraycoef/.

      3. Berger MJ, Seltzer SM. Stopping powers and ranges of electrons and positrons. Vol NBSIR 82–2550; 1983; URL: http://adsabs.harvard.edu/abs/1982spre.reptQ.B.

        • Taylor J.R.
        An introduction to error analysis.
        Journal of the Acoustical Society of America. 1997; 101 (URL:  http://link.aip.org/link/?JAS/101/1779/1&Agg=doi): 330https://doi.org/10.1121/1.418074
      4. Bushberg JT, Siebert JA, Leidholdt Jr EM, Boone JM. The Essential Physics of Medical Imaging. 2011. ISBN 978-0781780575. URL: https://books.google.ca/books?hl=fr&lr=&id=tqM8IG3f8bsC&oi=fnd&pg=PR1&dq=bushberg&ots=9njy4YjTnm&sig=-8aBt0FkFaLouBpKWDa7xYMGqQg#v=onepage&q=bushberg&f=false.

      5. National Nuclear Data Center. Nudat 2. URL:  https://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=6&n=5.

      6. Saint-Gobain. Scintillating Optical Fibers 2005;:1–6.

        • Lo Presti D.
        • Russo G.V.
        • Leonora E.
        • Aiello S.
        • Randazzo N.
        • Sipala V.
        • et al.
        Characterization technique of sub-millimeter scintillating fibers.
        IEEE Nucl Sci Symposium Conf Record. 2012; : 2104-2108https://doi.org/10.1109/NSSMIC.2011.6154428
        • Davis A.
        • Hink Binns P.W.
        • Epstein J.
        • Connell J.
        • Israel M.
        • Klarmann J.
        • et al.
        Scintillating optical fiber trajectory detector.
        Nucl Instrum Methods Phys Res. 1989; 276 (URL: http://ac.els-cdn.com/0168900289906517/1-s2.0-0168900289906517-main.pdf?_tid=35bed14c-8287-11e7-a3f1-00000aab0f6b&acdnat=1502890477_db8ff4ac7dd347798985a8d8f32dbaa1 http://ac.els-cdn.com/0168900289906517/1-s2.0-0168900289906517-main.pdf?_tid=d6c58308-8285.): 347-358
        • Amos N.A.
        • Bross A.D.
        • Lundin M.C.
        Optical attenuation length measurements of scintillating fibers.
        Nucl Inst Methods Phys Res, A. 1990; 297: 396-403https://doi.org/10.1016/0168-9002(90)91321-2
        • Hawkes C.M.
        • Kuhlen M.
        • Milliken B.
        • Stroynowski R.
        • Wicklund E.
        • Shimizu T.
        • et al.
        Decay time and light yield measurements for plastic scintillating fibers.
        Nuclear Inst Methods Phys Res, A. 1990; 292: 329-336https://doi.org/10.1016/0168-9002(90)90388-M
        • Chung M.
        • Margulies S.
        Aging studies on stressed and unstressed scintillating, wave-shifting, and clear fibers.
        SPOE. 1995; 2551: 2-9
        • Shokouhi S.
        • Stoll S.
        • Villanueva A.
        • Vaska P.
        • Schlyer D.
        • Woody C.
        • et al.
        A Noninvasive LSO-APD Blood Radioactivity Monitor for PET Imaging Studies.
        IEEE Trans Nucl Sci. 2003; 50 (URL:  http://ieeexplore.ieee.org/document/1236949/): 1457-1461https://doi.org/10.1109/TNS.2003.817284
        • Jelley J.V.
        Cerenkov radiation and its applications.
        British Journal of Applied Physics. 1955; 6 (URL:  http://stacks.iop.org/0508-3443/6/i=7/a=301): 227https://doi.org/10.1088/0508-3443/6/7/301
        • Pain F.
        • Laniece P.
        • Mastrippolito R.
        • Pinot L.
        • Charon Y.
        • Glatigny A.
        • et al.
        SIC: An intracerebral radiosensitive probe for in vivo neuropharmacology investigations in small laboratory animals: prototype design, characterization, and in vivo evaluation.
        IEEE Trans Nucl Sci. 2002; 49: 822-826https://doi.org/10.1109/TNS.2002.1039570
        • Goulet M.
        • Gingras L.
        • Beaulieu L.
        Real-time verification of multileaf collimator-driven radiotherapy using a novel optical attenuation-based fluence monitor.
        Med Phys. 2011; 38: 1459https://doi.org/10.1118/1.3549766
        • Beddar A.S.
        • Suchowerska N.
        • Law S.H.
        Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise.
        Phys Med Biol. 2004; 49 (URL: http://stacks.iop.org/0031-9155/49/i=5/a=009?key=crossref.e42a9fefaac90643e35640846e4d246c): 783-790https://doi.org/10.1088/0031-9155/49/5/009
        • Beddar A.S.
        • Mackie T.R.
        • Attix F.H.
        Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical consideration.
        Phys Med Biol. 1992; 37 (URL:  http://www.ncbi.nlm.nih.gov/pubmed/1438554): 1883-1900https://doi.org/10.1088/0031-9155/37/10/006
        • Beddar A.S.
        • Mackie T.R.
        • Attix F.H.
        Cerenkov light generated in optical fibres and other light pipes irradiated by electron beams.
        Med Phys. 1992; 37 (URL: http://iopscience.iop.org/0031-9155/37/4/007): 925-935https://doi.org/10.1088/0031-9155/37/4/007
        • Clift M.A.
        • Sutton R.A.
        • Webb D.V.
        Dealing with Cerenkov radiation generated in organic scintillator dosimeters by bremsstrahlung beams.
        Phys Med Biol. 2000; 45 (URL: http://iopscience.iop.org/0031-9155/45/5/307 http://stacks.iop.org/0031-9155/45/i=5/a=307?key=crossref.b1e169e0989f8771febc505717d38f9b): 165-1182https://doi.org/10.1088/0031-9155/45/5/307