Advertisement
Original paper| Volume 65, P106-113, September 2019

Download started.

Ok

High resolution radiochromic film dosimetry: Comparison of a microdensitometer and an optical microscope

  • P. Pellicioli
    Correspondence
    Corresponding author at: The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France.
    Affiliations
    The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France

    Inserm UA7 STROBE, Grenoble Alpes University, Grenoble, France

    Swansea University Medical School, Singleton Park, Swansea SA2 8PP, United Kingdom
    Search for articles by this author
  • S. Bartzsch
    Affiliations
    Helmholtz-Centre Munich, Institute of Innovative Radiation Therapy, Munich, Germany

    Klinikum rechts der Isar, Department for Radiation Oncology, Technical University of Munich, Germany
    Search for articles by this author
  • M. Donzelli
    Affiliations
    The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France

    ICR – The Institute of Cancer Research, London, United Kingdom
    Search for articles by this author
  • M. Krisch
    Affiliations
    The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France
    Search for articles by this author
  • Author Footnotes
    1 Deceased September 10, 2018.
    E. Bräuer-Krisch
    Footnotes
    1 Deceased September 10, 2018.
    Affiliations
    The European Synchrotron Radiation Facility, ID17 Biomedical Beamline, Grenoble, France
    Search for articles by this author
  • Author Footnotes
    1 Deceased September 10, 2018.
Published:August 23, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.08.012

      Highlights

      • Microbeam radiation therapy is an innovative radiotherapy technique.
      • Radiocromic film dosimetry at micrometric scale is fundamental.
      • Comparison between a microdensitometer and an optical microscope for film dosimetry.
      • Definition of film dosimetry protocol for microbeam dose analysis.
      • The microscope allows more precise, accurate and reliable dose evaluation.

      Abstract

      Purpose

      Microbeam radiation therapy is a developing technique that promises superior tumour control and better normal tissue tolerance using spatially fractionated X-ray beams only tens of micrometres wide.
      Radiochromic film dosimetry at micrometric scale was performed using a microdensitometer, but this instrument presents limitations in accuracy and precision, therefore the use of a microscope is suggested as alternative. The detailed procedures developed to use the two devices are reported allowing a comparison.

      Methods

      Films were irradiated with single microbeams and with arrays of 50 µm wide microbeams spaced by a 400 µm pitch, using a polychromatic beam with mean energy of 100 keV. The film dose measurements were performed using two independent instruments: a microdensitometer (MDM) and an optical microscope (OM).

      Results

      The mean values of the absolute dose measured with the two instruments differ by less than 5% but the OM provides reproducibility with a standard deviation of 1.2% compared to up to 7% for the MDM. The resolution of the OM was determined to be ~ 1 to 2 µm in both planar directions able to resolve pencil beams irradiation, while the MDM reaches at the best 20 µm resolution along scanning direction. The uncertainties related to the data acquisition are 2.5–3% for the OM and 9–15% for the MDM.

      Conclusion

      The comparison between the two devices validates that the OM provides equivalent results to the MDM with better precision, reproducibility and resolution. In addition, the possibility to study dose distributions in two-dimensions over wider areas definitely sanctions the OM as substitute of the MDM.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Laissue J.A.
        • Geiser G.
        • Spanne P.O.
        • Dilmanian F.A.
        • Gebbers J.O.
        • Geiser M.
        • et al.
        Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays.
        Int J Cancer. 1998; 78: 654-660https://doi.org/10.1002/(SICI)1097-0215(19981123)78:5<654::AID-IJC21>3.0.CO;2-L
        • Bräuer-Krisch E.
        • Serduc R.
        • Siegbahn E.A.
        • Le Duc G.
        • Prezado Y.
        • Bravin A.
        • et al.
        Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.
        Mutat Res – Rev Mutat Res. 2010; 704: 160-166https://doi.org/10.1016/j.mrrev.2009.12.003
        • Uyama A.
        • Kondoh T.
        • Nariyama N.
        • Umetani K.
        • Fukumoto M.
        • Shinohara K.
        • et al.
        A narrow microbeam is more effective for tumor growth suppression than a wide microbeam: an in vivo study using implanted human glioma cells.
        J Synchrotron Radiat. 2011; 18: 671-678https://doi.org/10.1107/s090904951101185x
        • Laissue J.A.
        • Blattmann H.
        • Di Michiel M.
        • Slatkin D.N.
        • Lyubimova N.
        • Guzman R.
        • et al.
        The weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology.
        Penetrating Radiat Syst Appl III. 2003; 4508: 65-73https://doi.org/10.1117/12.450774
        • Bouchet A.
        • Serduc R.
        • Laissue J.A.
        • Djonov V.
        Effects of microbeam radiation therapy on normal and tumoral blood vessels.
        Phys Medica. 2015; 31: 634-641https://doi.org/10.1016/j.ejmp.2015.04.014
        • Laissue J.A.
        • Blattmann H.
        • Wagner H.P.
        • Grotzer M.A.
        • Slatkin D.N.
        • Blattmann H.
        • et al.
        Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae.
        Dev Med Child Neurol. 2007; 49: 577-581https://doi.org/10.1111/j.1469-8749.2007.00577.x
        • Blattmann H.
        • Gebbers J.O.
        • Bräuer-Krisch E.
        • Bravin A.
        • Le Duc G.
        • Burkard W.
        • et al.
        Applications of synchrotron X-rays to radiotherapy.
        Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2005; 548: 17-22https://doi.org/10.1016/j.nima.2005.03.060
        • Duke P.J.
        Synchrotron radiation: production and properties.
        Oxford University Press, 2009
        • Fournier P.
        • Crosbie J.C.
        • Cornelius I.
        • Berkvens P.
        • Donzelli M.
        • Clavel A.H.
        • et al.
        Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates.
        Phys Med Biol. 2016; 61: N349-N361https://doi.org/10.1088/0031-9155/61/14/N349
        • Soellinger M.
        • Rutz A.K.
        • Kozerke S.
        • Boesiger P.
        3D cine displacement-encoded MRI of pulsatile brain motion.
        Magn Reson Med. 2009; 61: 153-162https://doi.org/10.1002/mrm.21802
        • Donzelli M.
        Improving dose calculation and treatment planning techniques for microbeam radiation therapy with computational methods.
        ICR – Institute of Cancer Research, Sutton, UK2018
        • Manchado de Sola F.
        • Vilches M.
        • Prezado Y.
        • Lallena A.M.
        Impact of cardiosynchronous brain pulsations on Monte Carlo calculated doses for synchrotron micro- and minibeam radiation therapy.
        Med Phys. 2018; 45: 3379-3390https://doi.org/10.1002/mp.12973
        • Martínez-Rovira I.
        • Sempau J.
        • Prezado Y.
        Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in microbeam radiation therapy.
        Med Phys. 2012; 39: 119-131https://doi.org/10.1118/1.3665768
        • Bräuer-Krisch E.
        • Rosenfeld A.
        • Lerch M.
        • Petasecca M.
        • Akselrod M.
        • Sykora J.
        • et al.
        Potential high resolution dosimeters for MRT.
        AIP Conf Proc. 2010; 1266: 89-97https://doi.org/10.1063/1.3478205
        • Bräuer-Krisch E.
        • Adam J.F.
        • Alagoz E.
        • Bartzsch S.
        • Crosbie J.
        • DeWagter C.
        • et al.
        Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT).
        Phys Medica. 2015; 31: 568-583https://doi.org/10.1016/j.ejmp.2015.04.016
        • Doran S.J.
        • Rahman A.T.A.
        • Bräuer-Krisch E.
        • Brochard T.
        • Adamovics J.
        • Nisbet A.
        • et al.
        Establishing the suitability of quantitative optical CT microscopy of PRESAGE®radiochromic dosimeters for the verification of synchrotron microbeam therapy.
        Phys Med Biol. 2013; 58: 6279-6297https://doi.org/10.1088/0031-9155/58/18/6279
        • McErlean C.M.
        • Bräuer-Krisch E.
        • Adamovics J.
        • Doran S.J.
        Assessment of optical CT as a future QA tool for synchrotron x-ray microbeam therapy.
        Phys Med Biol. 2015; 61: 320-337https://doi.org/10.1088/0031-9155/61/1/320
        • Fournier P.
        • Cornelius I.
        • Donzelli M.
        • Requardt H.
        • Nemoz C.
        • Petasecca M.
        • et al.
        X-Tream quality assurance in synchrotron X-ray microbeam radiation therapy.
        J Synchrotron Radiat. 2016; 23: 1180-1190https://doi.org/10.1107/s1600577516009322
        • Livingstone J.
        • Stevenson A.W.
        • Butler D.J.
        • Häusermann D.
        • Adam J.-F.F.
        Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields.
        Med Phys. 2016; 43: 4283-4293https://doi.org/10.1118/1.4953833
        • Archer J.
        • Li E.
        • Petasecca M.
        • Dipuglia A.
        • Cameron M.
        • Stevenson A.
        • et al.
        X-ray microbeam measurements with a high resolution scintillator fibre-optic dosimeter.
        Sci Rep. 2017; 7: 12450https://doi.org/10.1038/s41598-017-12697-6
        • Archer J.
        • Li E.
        • Petasecca M.
        • Stevenson A.
        • Livingstone J.
        • Dipuglia A.
        • et al.
        Synchrotron X-ray microbeam dosimetry with a 20 micrometre resolution scintillator fibre-optic dosimeter.
        J Synchrotron Radiat. 2018; 25: 826-832https://doi.org/10.1107/S1600577518003016
        • Mack A.
        • Mack G.
        • Weltz D.
        • Scheib S.G.
        • Böttcher H.D.
        • Seifert V.
        High precision film dosimetry with GAFCHROMIC® films for quality assurance especially when using small fields.
        Med Phys. 2003; 30: 2399-2409https://doi.org/10.1118/1.1593634
        • Devic S.
        Radiochromic film dosimetry: past, present, and future.
        Phys Medica. 2011; 27: 122-134https://doi.org/10.1016/J.EJMP.2010.10.001
        • Devic S.
        • Tomic N.
        • Lewis D.
        Reference radiochromic film dosimetry: review of technical aspects.
        Phys Medica. 2016; 32: 541-556https://doi.org/10.1016/j.ejmp.2016.02.008
        • Crosbie J.C.
        • Svalbe I.
        • Midgley S.M.
        • Yagi N.
        • Rogers P.A.W.
        • Lewis R.A.
        A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity.
        Phys Med Biol. 2008; 53: 6861-6877https://doi.org/10.1088/0031-9155/53/23/014
        • Nariyama N.
        • Ohigashi T.
        • Umetani K.
        • Shinohara K.
        • Tanaka H.
        • Maruhashi A.
        • et al.
        Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation.
        Appl Radiat Isot. 2009; 67: 155-159https://doi.org/10.1016/j.apradiso.2008.08.002
        • Bartzsch S.
        • Lott J.
        • Welsch K.
        • Bräuer-Krisch E.
        • Oelfke U.
        Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy.
        Med Phys. 2015; 42: 4069-4079https://doi.org/10.1118/1.4922001
      1. Ashland(R). Dosimetry media, type hd-v2. http://www.gafchromic.com/documents/gafchromic-hdv2.pdf. 2015.

        • Cheung T.
        • Butson M.J.
        • Yu P.K.N.
        Post-irradiation colouration of Gafchromic EBT radiochromic film.
        Phys Med Biol. 2005; 50: N281-N285https://doi.org/10.1088/0031-9155/50/20/N04
        • Williams M.
        • Metcalfe P.
        Radiochromic film dosimetry and its applications in radiotherapy.
        AIP Conf Proc. 2011; 1345: 75-99https://doi.org/10.1063/1.3576160
        • Butson M.J.
        • Yu P.K.N.
        • Cheung T.
        • Metcalfe P.
        Radiochromic film for medical radiation dosimetry.
        Mater Sci Eng R Reports. 2003; 41: 61-120https://doi.org/10.1016/S0927-796X(03)00034-2
        • Morri M.
        Experimental dosimetry of high dose rates X-ray microbeams fields for the.
        MRT. 2010;
      2. Imaging DF. Microscopy from Carl Zeiss AxioCam MRm from Carl Zeiss – More Information at Low Light Intensities. 2015.

        • Niroomand-Rad A.
        • Chiu-Tsao S.T.
        • Soares C.G.
        • Meigooni A.S.
        • Kirov A.S.
        Comparison of uniformity of dose response of double layer radiochromic films (MD-55-2) measured at 5 institutions.
        Phys Medica. 2005; 21: 15-21https://doi.org/10.1016/S1120-1797(05)80015-8
      3. PTW. Radiation Medicine Qa. Health Phys 2016:98. http://www.ptw.de/acrylic_and_rw3_slab_phantoms0.html.

      4. Musolino SV. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; Technical Reports Series No. 398, vol. 81. 2001. doi:10.1097/00004032-200111000-00017.

        • Crosbie J.C.
        • Fournier P.
        • Bartzsch S.
        • Donzelli M.
        • Cornelius I.
        • Stevenson A.W.
        • et al.
        Energy spectra considerations for synchrotron radiotherapy trials on the ID17 bio-medical beamline at the European Synchrotron Radiation Facility.
        J Synchrotron Radiat. 2015; 22: 1035-1041https://doi.org/10.1107/s1600577515008115
        • Tomic N.
        • Papaconstadopoulos P.
        • Bekerat H.
        • Antunovic G.
        • Aldelaijan S.
        • Seuntjens J.
        • et al.
        Monte Carlo simulations of different CT X-ray energy spectra within CTDI phantom and the influence of its changes on radiochromic film measurements.
        Phys Medica. 2019; 62: 105-110https://doi.org/10.1016/j.ejmp.2019.04.015
      5. PTW. Ionizing Radiation, Detectors. 2016.

      6. Clavel A. Microdosimetrie dans le cadre des assais precliniques de la radiotherapie a microfausceaux. 2012.

        • Smyth L.M.L.
        • Senthi S.
        • Crosbie J.C.
        • Rogers P.A.W.
        The normal tissue effects of microbeam radiotherapy: What do we know, and what do we need to know to plan a human clinical trial?.
        Int J Radiat Biol. 2016; 92: 302-311https://doi.org/10.3109/09553002.2016.1154217
        • Bräuer-Krisch E.
        • Bravin A.
        • Zhang L.
        • Siegbahn E.
        • Stepanek J.
        • Blattmann H.
        • et al.
        Characterization of a tungsten/gas multislit collimator for microbeam radiation therapy at the European Synchrotron Radiation Facility.
        Rev Sci Instrum. 2005;76.; https://doi.org/10.1063/1.1915270
        • Renier M.
        • Brochard T.
        • Nemoz C.
        Thomlinson W. A white-beam fast-shutter for microbeam radiation therapy at the ESRF.
        Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2002; https://doi.org/10.1016/S0168-9002(01)00905-6
        • Schültke E.
        • Trippel M.
        • Bräuer-Krisch E.
        • Renier M.
        • Bartzsch S.
        • Requardt H.
        • et al.
        Pencilbeam Irradiation technique for whole brain radiotherapy: technical and biological challenges in a small animal model.
        PLoS ONE. 2013; 8: 1-9https://doi.org/10.1371/journal.pone.0054960
        • Micke A.
        • Lewis D.
        yu X. SU-E-I- 63: multi-channel film dosimetry with non-uniformity correction.
        Med Phys. 2011; 38: 3410https://doi.org/10.1118/1.3611636
        • Aldelaijan S.
        • Devic S.
        Comparison of dose response functions for EBT3 model GafChromicTM film dosimetry system.
        Phys Medica. 2018; https://doi.org/10.1016/j.ejmp.2018.05.014