Advertisement
Research Article| Volume 65, P128-136, September 2019

Download started.

Ok

IMRT national audit in Portugal

Published:August 23, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.08.013

      Highlights

      • An ‘end-to-end’ IMRT audit was carried out in Portugal.
      • A customized anthropomorphic phantom SHANE was used to mimic a typical H&N patient.
      • A small volume ionization chamber and film were used for dosimetric verification.
      • Globally the results were within the defined tolerances in all centres.
      • Factors contributing to poorer results were identified and recommendations given.

      Abstract

      Purpose

      The IAEA newly developed “end-to-end” audit methodology for on-site verification of IMRT dose delivery has been carried out in Portugal in 2018. The main goal was to evaluate the physical aspects of the head and neck (H&N) cancer IMRT treatments. This paper presents the national results.

      Methods

      All institutions performing IMRT treatments in Portugal, 20 out of 24, have voluntarily participated in this audit. Following the adopted methodology, a Shoulder, Head and Neck End-to-End phantom (SHANE) – that mimics an H&N region, underwent all steps of an IMRT treatment, according to the local practices. The measurements using an ionization chamber placed inside the SHANE phantom at four reference locations (three in PTVs and one in the spinal cord) and an EBT3 film positioned in a coronal plane were compared with calculated doses. FilmQA Pro software was used for film analysis.

      Results

      For ionization chamber measurements, the percent difference was within the specified tolerances of ±5% for PTVs and ±7% for the spinal cord in all participating institutions. Considering film analysis, gamma passing rates were on average 96.9%±2.9% for a criterion of 3%/3 mm, 20% threshold, all above the acceptance limit of 90%.

      Conclusions

      The national results of the H&N IMRT audit showed a compliance between the planned and the delivered doses within the specified tolerances, confirming no major reasons for concern. At the same time the audit identified factors that contributed to increased uncertainties in the IMRT dose delivery in some institutions resulting in recommendations for quality improvement.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nutting C.M.
        • Morden J.P.
        • Harrington K.J.
        • Urbano T.G.
        • Bhide S.A.
        • Clark C.
        • et al.
        Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial.
        Lancet Oncol. 2011; 12: 127-136https://doi.org/10.1016/S1470-2045(10)70290-4
        • Izewska J.
        • Lechner W.
        • Wesolowska P.
        Global availability of dosimetry audits in radiotherapy: The IAEA dosimetry audit networks database.
        Phys Imaging Radiat Oncol. 2018; 5: 1-4https://doi.org/10.1016/j.phro.2017.12.002
        • Ibbott G.S.
        • Thwaites D.I.
        Audits for advanced treatment dosimetry.
        J Phys Conf Ser. 2015; 573: 12002https://doi.org/10.1088/1742-6596/573/1/012002
        • Clark C.H.
        • Jornet N.
        • Muren L.P.
        The role of dosimetry audit in achieving high quality radiotherapy.
        Phys Imaging Radiat Oncol. 2018; 5: 85-87https://doi.org/10.1016/j.phro.2018.03.009
        • Clark C.H.
        • Aird E.G.A.
        • Bolton S.
        • Miles E.A.
        • Nisbet A.
        • Snaith J.A.D.
        • et al.
        Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials.
        Br J Radiol. 2015; 88: 20150251https://doi.org/10.1259/bjr.20150251
        • Weber D.C.
        • Vallet V.
        • Molineu A.
        • Melidis C.
        • Teglas V.
        • Naudy S.
        • et al.
        IMRT credentialing for prospective trials using institutional virtual phantoms: results of a joint European Organization for the Research and Treatment of Cancer and Radiological Physics Center project.
        Radiat Oncol. 2014; 9: 123https://doi.org/10.1186/1748-717X-9-123
        • Miri N.
        • Lehmann J.
        • Legge K.
        • Zwan B.J.
        • Vial P.
        • Greer P.B.
        Remote dosimetric auditing for intensity modulated radiotherapy: a pilot study.
        Phys Imaging Radiat Oncol. 2017; 4: 26-31https://doi.org/10.1016/j.phro.2017.11.004
        • Nakamura M.
        • Minemura T.
        • Ishikura S.
        • Nishio T.
        • Narita Y.
        • Nishimura Y.
        An on-site audit system for dosimetry credentialing of intensity-modulated radiotherapy in Japanese Clinical Oncology Group (JCOG) clinical trials.
        Phys Med. 2016; 32: 987-991https://doi.org/10.1016/j.ejmp.2016.07.002
        • Izewska J.
        • Andreo P.
        The IAEA/WHO TLD postal programme for radiotherapy hospitals.
        Radiother Oncol. 2000; 54: 65-72https://doi.org/10.1016/S0167-8140(99)00164-4
        • Gershkevitsh E.
        • Schmidt R.
        • Velez G.
        • Miller D.
        • Korf E.
        • Yip F.
        • et al.
        Dosimetric verification of radiotherapy treatment planning systems: results of IAEA pilot study.
        Radiother Oncol. 2008; 89: 338-346https://doi.org/10.1016/j.radonc.2008.07.007
        • Gershkevitsh E.
        • Pesznyak C.
        • Petrovic B.
        • Grezdo J.
        • Chelminski K.
        • Lopes M.C.
        • et al.
        Dosimetric inter-institutional comparison in European radiotherapy centres: results of IAEA supported treatment planning system audit.
        Acta Oncol. 2014; 53: 628-636https://doi.org/10.3109/0284186X.2013.840742
        • Lopes M.C.
        • Cavaco A.
        • Jacob K.
        • Madureira L.
        • Germano S.
        • Faustino S.
        • et al.
        Treatment planning systems dosimetry auditing project in Portugal.
        Phys Medica. 2014; 30: 96-103https://doi.org/10.1016/j.ejmp.2013.03.008
        • Lafond C.
        • Chiavassa S.
        • Bertaut C.
        • Boussion N.
        • Chapel N.
        • Chapron L.
        • et al.
        DEMAT: a multi-institutional dosimetry audit of rotational and static intensity-modulated radiotherapy.
        Phys Medica. 2019; 32: 664-670https://doi.org/10.1016/j.ejmp.2016.04.008
        • Seravalli E.
        • Houweling A.C.
        • Van Battum L.
        • Raaben T.A.
        • Kuik M.
        • de Pooter J.A.
        • et al.
        Auditing local methods for quality assurance in radiotherapy using the same set of predefined treatment plans.
        Phys Imaging Radiat Oncol. 2018; 5: 19-25https://doi.org/10.1016/j.phro.2018.01.002
        • Jurado-Bruggeman D.
        • Hernández V.
        • Sáez J.
        • Navarro D.
        • Pino F.
        • Martínez T.
        • et al.
        Multi-centre audit of VMAT planning and pre-treatment verification.
        Radiother Oncol. 2017; 124: 302-310https://doi.org/10.1016/j.radonc.2017.05.019
        • Clark C.H.
        • Hansen V.N.
        • Chantler H.
        • Edwards C.
        • James H.V.
        • Webster G.
        • et al.
        Dosimetry audit for a multi-centre IMRT head and neck trial.
        Radiother Oncol. 2009; 93: 102-108https://doi.org/10.1016/j.radonc.2009.04.025
        • Clark C.H.
        • Hussein M.
        • Tsang Y.
        • Thomas R.
        • Wilkinson D.
        • Bass G.
        • et al.
        A multi-institutional dosimetry audit of rotational intensity-modulated radiotherapy.
        Radiother Oncol. 2014; 113: 272-278https://doi.org/10.1016/j.radonc.2014.11.015
        • Veres A.
        • Hallet J.X.
        Equal-Estro experience in dosimetry audits in advanced techniques of radiotherapy – the tomotherapy example.
        SSDL Newsletter. 2019; 70 (https://www-pub.iaea.org/MTCD/Publications/PDF/Newsletters/ssdl-70.pdf [accessed 26.06.2019]): 29-31
        • Molineu A.
        • Hernandez N.
        • Nguyen T.
        • Ibbott G.
        • Followill D.
        Credentialing results from IMRT irradiations of an anthropomorphic head and neck phantom.
        Med Phys. 2013; 40https://doi.org/10.1118/1.4773309
        • Lechner W.
        • Wesolowska P.
        • Azangwe G.
        • Arib M.
        • Gabriel V.
        • Alves L.
        • et al.
        A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy.
        Phys Imaging Radiat Oncol. 2018; 5: 58-63https://doi.org/10.1016/j.phro.2018.02.005
        • Izewska J.
        • Wesolowska P.
        • Azangwe G.
        • Followill D.S.
        • Thwaites D.I.
        • Arib M.
        • et al.
        Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: results of IAEA multi-center studies.
        Acta Oncol. 2016; 55: 909-916https://doi.org/10.3109/0284186X.2016.1139180
        • Carson M.E.
        • Molineu A.
        • Taylor P.A.
        • Followill D.S.
        • Stingo F.C.
        • Kry S.F.
        Examining credentialing criteria and poor performance indicators for IROC Houston’s anthropomorphic head and neck phantom.
        Med Phys. 2016; 43: 6491https://doi.org/10.1118/1.4967344
        • Izewska J.
        Development of quality audits for advanced technology in radiotherapy dose delivery.
        SSDL Newsletter. 2016; 64 (https://www.iaea.org/publications/11032/ssdl-newsletter-issue-no-64-february-2016 [accessed 26.06.2019]): 8-15
      1. International Atomic Energy Agency (IAEA). WORKING MATERIAL IAEA Supported National “End-to-End” Audit Programme for Dose Delivery Using Intensity Modulated Radiation Therapy through On-Site Visits to Radiation Therapy Institutions; 2019. https://dosimetry-audit-networks.iaea.org/Content/end-to-end%20CIRS%20SHANE/National%20end-to-end%20IMRT-VMAT%20audit%20methodology.pdf [accessed 13.06.2019].

      2. CIRS. Phantom Patient for VMAT & IMRT. http://www.cirsinc.com/products/all/119/shane-phantom-patient-for-vmat-and-imrt/ [accessed 26.06.2019].

        • Kazantsev P.
        • Clark C.
        • Venencia D.
        • Georg D.
        • Gershkevitsh E.
        • Van Dyk J.
        • et al.
        New IAEA end-to-end on-site IMRT audit methodology: pilot test results.
        Proceedings of the International Conference on Advance in Radiation Oncology (ICARO2). International Atomic Energy Agency, Vienna2017
        • Followill D.S.
        • Kry S.F.
        • Qin L.
        • Leif J.
        • Molineu A.
        • Alvarez P.
        • et al.
        The radiological physics center’s standard dataset for small field size output factors.
        J Appl Clin Med Phys. 2012; 13: 282-289https://doi.org/10.1120/jacmp.v13i5.3962
        • Followill D.S.
        • Kry S.F.
        • Qin L.
        • Leif J.
        • Molineu A.
        • Alvarez P.
        • et al.
        Erratum: “The Radiological Physics Center’s standard dataset for small field size output factors”.
        J Appl Clin Med Phys. 2014; 15: 356-357https://doi.org/10.1120/jacmp.v15i2.4757
        • International Atomic Energy Agency (IAEA)
        IAEA TRS-483: Dosimetry of small static fields used in external beam radiotherapy: an international code of practice for reference and relative dose determination.
        International Atomic Energy Agency, Vienna2017
        • International Atomic Energy Agency (IAEA)
        IAEA TRS- 430: Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer.
        International Atomic Energy Agency, Vienna2005
        • Kazantsev P.
        • Hernandez V.
        • Luketin L.
        • Izewska J.
        EP-2194: analysis of treatment planning feasibility of the multinational end-to-end IMRT audit methodology.
        Radiother Oncol. 2018; 127: S1212-S1213https://doi.org/10.1016/S0167-8140(18)32503-9
        • International Atomic Energy Agency (IAEA)
        Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA TRS-398.
        International Atomic Energy Agency, Vienna2000
        • Lewis D.
        • Micke A.
        • Yu X.
        • Chan M.F.
        An efficient protocol for radiochromic film dosimetry combining calibration and measurement in a single scan.
        Med Phys. 2012; 39: 6339-6350https://doi.org/10.1118/1.4754797
        • Klein E.E.
        • Hanley J.
        • Bayouth J.
        • Carolina N.
        • Simon W.
        • Dresser S.
        • et al.
        Task Group 142 report: Quality assurance of medical accelerators a.
        Med Phys. 2009; 36: 4197-4212https://doi.org/10.1118/1.3190392
        • Husby E.
        • Svendsen E.D.
        • Andersen H.K.
        • Martinsen A.C.T.
        100 days with scans of the same Catphan phantom on the same CT scanner.
        J Appl Clin Med Phys. 2017; 18: 224-231https://doi.org/10.1002/acm2.12186
      3. ICRU Report 91: prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU, 2014;14:31–53.

        • Chang C.C.
        • Lin J.C.
        • Cheng H.W.
        • Tsai J.T.
        Dose impact of systemic MLC position error for esophagus cancer plan: volumetric modulated arc therapy versus step and shoot modulated therapy.
        Int J Radiat Oncol Biol Phys. 2015; 93: E563https://doi.org/10.1016/j.ijrobp.2015.07.1989
        • Mu G.
        • Ludlum E.
        • Xia P.
        Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer.
        Phys Med Biol. 2008; 53: 77-88https://doi.org/10.1088/0031-9155/53/1/005
        • Kilby W.
        • Sage J.
        • Rabett V.
        Tolerance levels for quality assurance of electron density values generated from CT in radiotherapy.
        Phys Med Biol. 2002; 47: 1485-1492https://doi.org/10.1088/0031-9155/47/9/304
        • Nakao M.
        • Ozawa S.
        • Yamada K.
        • Yogo K.
        • Hosono F.
        • Hayata M.
        • et al.
        Tolerance levels of CT number to electron density table for photon beam in radiotherapy treatment planning system.
        J Appl Clin Med Phys. 2018; 19: 271-275https://doi.org/10.1002/acm2.12226
        • Huang J.Y.
        • Pulliam K.B.
        • McKenzie E.M.
        • Followill D.S.K.S.
        Effects of spatial resolution and noise on gamma analysis for IMRT QA.
        J Appl Clin Med Phys. 2014; 15: 4690https://doi.org/10.1120/jacmp.v15i4.4690
        • Kry S.F.
        • Molineu A.
        • Kerns J.
        • Faught A.
        • Huang J.Y.
        • Pulliam K.
        • et al.
        Institutional patient-specific intensity-modulated radiation therapy quality assurance does not predict unacceptable plan delivery as measured by IROC Houston’s head and neck phantom.
        Int J Radiat Oncol Biol Phys. 2015; 90: 1195-1201https://doi.org/10.1016/j.ijrobp.2014.08.334
        • Santos T.
        • Ventura T.
        • Capela M.
        • Mateus J.
        • Lopes M.C.
        Influence of film dosimetry protocols on IMRT audit results.
        Proceedings of the international symposium on standards, applications and quality assurance in medical radiation dosimetry (IDOS2019). International Atomic Energy Agency, Vienna2019