Advertisement

Size-specific dose estimations for pediatric chest, abdomen/pelvis and head CT scans with the use of GATE

Published:September 05, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.08.020

      Highlights

      • The GATE MC toolkit was used to model and validate the multislice helical GE BrightSpeed Elite CT model.
      • An organ dose database for individuals (2.1–14 years age range), undergoing CT examinations was created.
      • Dependency of absorbed dose and the anatomical characteristics was researched for several organs.
      • Effective doses-normalized-to-DLP were estimated and correlated with the total body weight.

      Abstract

      Purpose

      The purpose of this study is to create an organ dose database for pediatric individuals undergoing chest, abdomen/pelvis, and head computed tomography (CT) examinations, and to report the differences in absorbed organ doses, when anatomical differences exist for pediatric patients.

      Methods

      The GATE Monte Carlo (MC) toolkit was used to model the GE BrightSpeed Elite CT model. The simulated scanner model was validated with the standard Computed Tomography Dose Index (CTDI) head phantom. Twelve computational models (2.1–14 years old) were used. First, contributions to effective dose and absorbed doses per CTDIvol and per 100 mAs were estimated for all organs. Then, doses per CTDIvol were correlated with patient model weight for the organs inside the scan range for chest and abdomen/pelvis protocols. Finally, effective doses per dose-length product (DLP) were estimated and compared with the conventional conversion k-factors.

      Results

      The system was validated against experimental CTDIw measurements. The doses per CTDIvol and per 100 mAs for selected organs were estimated. The magnitude of the dependency between the dose and the anatomical characteristics was calculated with the coefficient of determination at 0.5–0.7 for the internal scan organs for chest and abdomen/pelvis protocols. Finally, effective doses per DLP were compared with already published data, showing discrepancies between 13 and 29% and were correlated strongly with the total weight (R2 > 0.8) for the chest and abdomen protocols.

      Conclusions

      Big differences in absorbed doses are reported even for patients of similar age or same gender, when anatomical differences exist on internal organs of the body.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dauer L.
        • Hricak H.
        Addressing the challenge of managing radiation use in medical imaging: paradigm shifts and strategic priorities.
        Oncology-Ny. 2014; 28: 243-244
        • ICRP
        Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102.
        Ann ICRP. 2007; 37: 1-80
        • ICRP
        Managing patient dose in computed tomography.
        Ann ICRP. 2000; 2000: 1-86
        • Schauer D.
        • Linton O.
        NCRP Report No. 160, ionizing radiation exposure of the population of the United States, medical exposure-are we doing less with more, and is there a role for health physicists?.
        Health Phys. 2009; 97: 1-5
        • UNSCEAR
        Sources and effects of ionizing radiation. United Nations scientific committee on the effects of atomic radiation 2008 report. 2008: 2
        • WHO
        Communicating radiation risks in paediatric imaging: information to support health care discussions about benefit and risk.
        World Health Organization, 2016
        • Robbins E.
        Radiation risks from imaging studies in children with cancer.
        Pediatr Blood Cancer. 2008; 51: 453-457
        • UNSCEAR
        Sources, Effects and risks of ionizing radiation. United Nations scientific committee on the effects of atomic radiation.
        2013
        • Pearce M.
        • Salotti J.
        • Little M.
        • McHugh K.
        • Lee C.
        • Kim K.
        • et al.
        Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study.
        Lancet. 2012; 380: 499-505
        • Brenner D.
        • Doll R.
        • Goodhead D.
        • Hall E.
        • Land C.
        • Little J.
        • et al.
        Cancer risks attributable to low doses of ionizing radiation: assessing what we really know.
        Proc Natl Acad Sci USA. 2003; 100: 13761-13765
        • Frush D.
        • Donnelly L.
        • Rosen N.
        Computed tomography and radiation risks: what pediatric health care providers should know.
        Pediatrics. 2003; 112: 951-957
        • Belley M.D.
        • Wang C.
        • Nguyen G.
        • Gunasingha R.
        • Chao N.J.
        • Chen B.J.
        • et al.
        Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators.
        Med Phys. 2014; 41: 034101-34107
        • Brenner D.
        • Elliston C.
        • Hall E.
        • Berdon W.
        Estimated risks of radiation-induced fatal cancer from pediatric CT.
        AJR Am J Roentgenol. 2001; 176: 289-296
        • Brenner D.
        • Hall E.
        Cancer risks from CT scans: now we have data, what next?.
        Radiology. 2012; 265: 330-331
      1. AAPM. The Measurement, Reporting, and Management of Radiation Dose in CT. AAPM REPORT NO. 96. Report of AAPM Task Group 232008. pp. 1–28.

      2. AAPM. Size-Specific Dose Estimates (SSDE) in Pediatric and Adult Body CT Examinations. AAPM Report No. 204. Report of AAPM Task Group 204; 2011.

      3. AAPM. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT. AAPM REPORT NO. 220. The Report of AAPM Task Group 220; 2014.

        • Moore B.
        • Brady S.
        • Mirro A.
        • Kaufman R.
        Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations.
        Med Phys. 2014; 41: 07191-7201
        • Schmidt B.
        • Saltybaeva N.
        • Kolditz D.
        • Kalender W.
        Assessment of patient dose from CT localizer radiographs.
        Med Phys. 2013; 40: 084301-84308
        • Boos J.
        • Meineke A.
        • Bethge O.
        • Antoch G.
        • Kröpil P.
        Dose monitoring in radiology departments: status quo and future perspectives.
        Rofo. 2016; 188: 443-447
        • Heilmaier C.
        • Zuber N.
        • Bruijns B.
        • Ceyrolle C.
        • Weishaupt D.
        Implementation of dose monitoring software in the clinical routine: first experiences.
        Fortschr Röntgenstr. 2016; 188: 82-88
      4. Shrimpton P, Hillier M, Lewis M, Dunn M. Doses from computed tomography (CT) examinations in the UK-2003 review. In: (NRPB) NRPB, editor. Chilton, UK NRPB-W67 ed.; 2005.

        • Kanal K.
        • Butler P.
        • Sengupta D.
        • Bhargavan-Chatfield M.
        • Coombs L.
        • Morin R.U.S.
        Diagnostic reference levels and achievable doses for 10 adult CT examinations.
        Radiology. 2017; 284: 120-133
      5. Cristy M, Eckerman K. Specific Absorbed Fractions of Energy at Various Ages from Internal Photon Sources. Oak Ridge National Laboratory. United States: ORNL/TM-8381/V1-V7; 1987.

        • Shrimpton P.
        • Jessen K.
        • Geleijns J.
        • Panzer W.
        • Tosi G.
        Reference doses in computed tomography.
        Rad Prot Dosim. 1998; 80: 55-59
        • Menzel H.
        • Schibilla H.
        • Teunen D.
        European guidelines on quality criteria for computed tomography.
        European Commission, 2000
        • Huda W.
        • Ogden K.
        • Khorasani M.
        Converting dose-length product to effective dose at CT.
        Radiology. 2008; 248: 995-1003
        • Shrimpton P.
        • Wall B.
        Reference doses for paediatric computed tomography.
        Radiat Prot Dosim. 2000; 90: 249-252
      6. Commission E. European guidelines on quality criteria for computed tomography. In: 2004, editor.: European Commission Report EUR 16262; 2004.

        • Deak P.
        • Smal Y.
        • Kalender W.
        Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product.
        Radiology. 2010; 257: 158-166
        • Adult I.C.R.P.
        Reference computational phantoms. ICRP publication 110.
        Ann ICRP. 2009; 39
        • Romanyukha A.
        • Folio L.
        • Lamart S.
        • Simon S.
        • Lee C.
        Body size-specific effective dose conversion coefficients forct scans.
        Radiat Prot Dosimetry. 2016; 172: 428-437
        • Chapple C.
        • Willis S.
        • Frame J.
        Effective dose in paediatric computed tomography.
        Phys Med Biol. 2002; 47: 107-108
        • Fujii K.
        • Aoyama T.
        • Koyama S.
        • Kawaura C.
        Comparative evaluation of organ and effective doses for paediatric patients with those for adults in chest and abdominal CT examinations.
        Br J Radiol. 2007; 80: 657-667
        • Zhang D.
        • Li X.
        • Gao Y.
        • Xu X.
        • Liu B.
        A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms.
        Med Phys. 2013; 40: 081918-81919
        • DeMarco J.
        • Cagnon C.
        • Cody D.
        • Stevens D.
        • McCollough C.
        • O’Daniel J.
        • et al.
        A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
        Phys Med Biol. 2005; 50: 3989-4004
        • Caon
        Voxel-based computational models of real human anatomy: a review.
        Radiat Environ Biophys. 2004; 42: 229-236
        • Geleijns J.
        • Joemai R.
        • Cros M.
        • Hernandez-Giron I.
        • Calzado A.
        • Dewey M.
        • et al.
        A Monte Carlo simulation for the estimation of patient dose in rest and stress cardiac computed tomography with a 320-detector row CT scanner.
        Phys Med. 2015; 31: 1029-1034
        • Kalender W.
        • Saltybaeva N.
        • Kolditz D.
        • Hupfer M.
        • Beister M.
        • Schmidt B.
        Generating and using patient-specific whole-body models for organ dose estimates in CT with increased accuracy: feasibility and validation.
        Phys Med. 2014; 30: 925-933
        • Turner A.
        • Zhang D.
        • Kim H.
        • DeMarco J.
        • Cagnon C.
        • Angel E.
        • et al.
        A method to generate equivalent energy spectra and filtration models based on measurement for multidetector CT Monte Carlo dosimetry simulations.
        Med Phys. 2009; 36: 2154-2164
        • Turner A.
        • Zhang D.
        • Khatonabadi M.
        • Zankl M.
        • DeMarco J.
        • Cagnon C.
        • et al.
        The feasibility of patient size-corrected, scanner-independent organ dose estimates for abdominal CT exams.
        Med Phys. 2011; 38: 820-829
      7. http://www.impactscan.org/ctdosimetry.htm.

        • Heron L.
        CTDOSE: a user’s guide.
        Software and manual New Zealand, National Radiation Laboratory, 1993
      8. Radimetrics. eXposure 2012, 2012.

        • Kalender W.
        • Schmidt B.
        • Zankl M.
        • Schmidt M.
        A PC program for estimating organ dose and effective dose values in computed tomography.
        Eur Radiol. 1999; 9: 555-562
      9. Zankl M, Panzer W, Drexler G. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods, Part VI: Organ Doses From Computed Tomographic Examinations. Munchen: GSF-Gesellschaft fur Strahlen und Umweltforschung mbH1991. p. 1–195.

      10. Kramer R, Zankl M, Williams G, Drexler G. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte-Carlo Methods, Part 1: The Male (ADAM) and Female (EVA) Adult Mathematical Phantoms; 1982.

        • Lee C.
        • Kim K.
        • Long D.
        • Bolch W.
        Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation.
        Med Phys. 2012; 39: 2129-2146
        • Stamm G.
        • Nagel H.
        CT-expo-a novel program for dose evaluation in CT.
        Fortschr Röntgenstr. 2002; 174: 1570-1576
        • Zankl M.
        • Panzer W.
        • Petoussi-Henss H.
        • Drexler G.
        Organ doses for children from computed tomographic examinations radiation protection dosimetry.
        Radiat Prot Dosimetry. 1995; 57: 393-396
        • Veit R.
        • Zankl M.
        • Petoussi N.
        • Mannweiler E.
        • Drexler D.
        Tomographic anthropomorphic models: part I.
        in: 3/89 G-BR3/89 G-BR Construction technique and description of models of an 8 week old baby and a 7 year old child. National Research Center for Environment and Health, Neuherberg, Germany1989
        • Ban N.
        • Takahashi F.
        • Sato K.
        • Endo A.
        • Ono K.
        • Hasegawa T.
        • et al.
        Development of a web-based CT dose calculator: WAZA-ARI.
        Radiat Prot Dosim. 2011; : 333-337
      11. CT_Imaging. ImpactDose.

        • Lee C.
        • Kim K.
        • Bolch W.
        • Moroz B.
        • Folio L.
        NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.
        J Radiol Prot. 2015; 35: 891-909
        • Xu X.
        An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history.
        Phys Med Biol. 2014; 59: 233-302
        • Zaidi H.
        • Xu X.
        Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modeling in radiological.
        Annu Rev Biomed Eng. 2007; 9: 471-500
        • Na Y.
        • Zhang B.
        • Zhang J.
        • Caracappa P.
        • Xu X.
        Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms.
        Phys Med Biol. 2010; 55: 3789-3811
        • Lee C.
        • Lodwick D.
        • Hurtado J.
        • Pafundi D.
        • Williams J.
        • Bolch W.
        The UF family of reference hybrid phantoms for computational radiation dosimetry.
        Phys Med Biol. 2010; 55: 339-363
        • Lee C.
        • Lodwick D.
        • Williams J.
        • Bolch W.
        Hybrid computational phantoms of the 15-year male and female adolescent: applications to CT organ dosimetry for patients of variable morphometry.
        Med Phys. 2008; 35: 2366-2382
        • Ding A.
        • Gao Y.
        • Liu H.
        • Caracappa P.
        • Long D.
        • Bolch W.
        • et al.
        VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.
        Phys Med Biol. 2015; 60: 5601-5625
        • Gao Y.
        • Quinn B.
        • Pandit-Taskar N.
        • Behr G.
        Patient-specific organ and effective dose estimates in pediatric oncology computed tomography.
        Phys. Med. 2018; 45: 146-155
        • Straton R.
        • Lee C.
        • Lee C.
        • Williams M.
        • Hintenlang D.
        • Arreola M.
        • et al.
        Organ and effective doses in newborn patients during helical multislice computed tomography examination.
        Phys Med Biol. 2006; 51: 5151-5166
        • Lee C.
        • Lee C.
        • Staton R.J.
        • Hintenlang D.E.
        • Arreola M.M.
        • Williams J.L.
        • et al.
        Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination.
        Radiat Protect Phys. 2007; 34: 1858-1873
        • Li X.
        • Samei E.
        • Segars W.
        • Sturgeon G.
        • Colsher J.
        • Frush D.
        Patient-specific radiation dose and cancer risk for pediatric chest CT.
        Radiology. 2011; 259: 862-874
        • Tian X.
        • Li X.
        • Segars W.
        • Paulson E.
        • Frush D.
        • Samei E.
        Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models.
        Radiology. 2014; 270: 535-547
        • Papadakis A.
        • Perisinakis K.
        • Damilakis J.
        Development of a method to estimate organ doses for pediatric CT examinations.
        Med Phys. 2016; 43: 2108-2118
        • Gao Y.
        • Quinn B.
        • Mahmood U.
        • Long D.
        • Erdi D.
        • Germain J.
        • et al.
        A comparison of pediatric and adult CT organ dose estimation methods.
        BMC Med Imaging. 2017; 17–28
        • Schlattl H.
        • Zankl M.
        • Becker J.
        • Hoeschen C.
        Dose conversion coefficients for paediatric CT examinations with automatic tube current modulation.
        Phys Med Biol. 2012; 57: 6309-6326
        • Gu J.
        • Bednarz B.
        • Caracappa P.
        • Xu X.
        The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations.
        Phys Med Biol. 2009; 54: 2699-2717
        • Muryn J.
        • Morgan A.
        • Liptak C.
        • Dong F.
        • Segars W.
        • Primak A.
        • et al.
        Analysis of uncertainties in Monte Carlo simulated organ and effective dose in chest CT: scanner- and scan-related factors.
        Phys Med Biol. 2017; 62: 3175-3203
        • Kost S.
        • Fraser N.
        • Carver D.
        • Pickens D.
        • Price R.
        • Hernanz-Schulman M.
        • et al.
        Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis.
        Pediatr Radiol. 2015; 45: 1771-1780
        • Carver D.
        • Kost S.D.
        • Fraser N.D.
        • Segars W.P.
        • Pickens D.R.
        • Price R.R.
        • et al.
        Realistic phantoms to characterize dosimetry in pediatric CT.
        Pediatr Radiol. 2017; 47: 691-700
        • Papadimitroulas P.
        • Kostou T.
        • Chatzipapas C.
        • Visvikis D.
        • Mountris A.K.
        • Jaouen V.
        • et al.
        A review on personalized pediatric dosimetry applications using advanced computational tools.
        IEEE Trans Radiat Plasma Med Sci. 2018;
        • Kainz Wolfgang
        • Neufeld Esra
        • Bolch Wesley E.
        • Graff Christian G.
        • Kim Chan Hyeong
        • Kuster Niels
        • et al.
        Advances in computational human phantoms and their applications in biomedical engineering—a topical review.
        IEEE Trans Radiat Plasma Med Sci. 2018;
        • Perisinakis K.
        • Pouli S.
        • Tzedakis A.
        • Spanakis A.
        • Hatzidakis A.
        • Raissaki M.
        • et al.
        What is the underestimation of radiation dose to the pediatric thyroid gland from contrast enhanced CT, if contrast medium uptake is not taken into account? 2018.
        Phys Med. 2018; 49: 95-98
        • Marshall E.L.
        • Borrego D.
        • Tran T.
        • Fudge J.C.
        • Bolch W.E.
        Evaluation of the UF/NCI hybrid computational phantoms for use in organ dosimetry of pediatric patients undergoing fluoroscopically guided cardiac procedures.
        Phys Med Biol. 2018; 63: 055006-55022
        • Stepusin E.J.
        • Long D.J.
        • Marshall E.L.
        • Bolch W.E.
        Assessment of different patient-to-phantom matching criteria applied in Monte Carlo-based computed tomography dosimetry.
        Med Phys. 2017; 44: 5498-5508
        • Jan S.
        • Santin G.
        • Strul D.
        • Staelens S.
        • Assié K.
        • Autret D.
        • et al.
        GATE: a simulation toolkit for PET and SPECT.
        Phys Med Biol. 2004; 49: 4543-4561
        • Sarrut D.
        • Bardiès M.
        • Boussion N.
        • Freud N.
        • Jan S.
        • Létang J.
        • et al.
        A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications.
        Med Phys. 2014; 41: 064301-64314
        • Fedon C.
        • Longo F.
        • Mettivier G.
        • Longo R.
        GEANT4 for breast dosimetry: parameters optimization study.
        Phys Med Biol. 2015; 60: 311-323
        • Smekens F.
        • Letang J.M.
        • Noblet C.
        • Chiavassa S.
        • Delpon G.
        • Freud N.
        • et al.
        Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy.
        Phys Med Biol. 2014; 59: 7703-7715
        • Papadimitroulas P.
        Dosimetry applications in GATE Monte Carlo toolkit.
        Phys Med. 2017; 41: 136-140
        • Allison J.
        • et al.
        Geant4 developments and applications.
        IEEE Trans Nucl Sci. 2006; 53: 270-278
        • Agostinelli S.
        • et al.
        Geant4 – a simulation toolkit.
        Nucl Instrum Meth Phys Res. 2003; A506: 250-303
        • Allison J.
        • et al.
        Recent developments in Geant4.
        Nucl Instrum Meth. 2016; A835: 186-225
        • Siewerdsen J.
        • Waese A.
        • Moseley D.
        • Richard S.
        • Jaffray D.
        Spektr: a computational tool for x-ray spectral analysis and imaging system optimization.
        Med Phys. 2004; 31: 3057-3067
        • Boone J.
        • Seibert J.
        An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV.
        Med Phys. 1997; 24: 1661-1670
        • Fewell T.
        • Shuping R.
        • Ke H.
        Handbook of computed tomography X-ray spectra.
        (81-8162 (U.S. Government Printing Office, Washington, D.C.)) HHS Publication (FDA), 1981
        • Baldacci F.
        • Mittone A.
        • Bravin A.
        • Coan P.
        • Delaire F.
        • Ferrero C.
        • et al.
        A track length estimator method for dose calculations in low-energy X-ray irradiations: implementation, properties and performance.
        Med Phys. 2015; 25: 36-47
        • Jarry G.
        • DeMarco J.
        • Beifuss U.
        • Cagnon C.
        • McNitt-Gray M.
        A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models.
        Phys Med Biol. 2003; 48: 2645-2663
        • Norris H.
        • Zhang Y.
        • Bond J.
        • Sturgeon G.
        • Minhas A.
        • Tward D.
        • et al.
        A set of 4D pediatric XCAT reference phantoms for multimodality research.
        Med Phys. 2014; 41: 033701-33711
        • Segars W.
        • Norris H.
        • Sturgeon G.
        • Zhang Y.
        • Bond J.
        • Minhas A.
        • et al.
        The development of a population of 4D pediatric XCAT phantoms for imaging research and optimization.
        Med Phys. 2015; 42: 4719-4726
        • Christ A.
        • Kainz W.
        • Hahn E.
        • Honegger K.
        • Zefferer M.
        • Neufeld E.
        • et al.
        The Virtual Family–development of surface-based anatomical models of two adults and two children for dosimetric simulations.
        Phys Med Biol. 2010; 55: 23-38
      12. https://www.aapm.org/pubs/CTProtocols/.

        • Turner A.C.
        • Zankl M.
        • DeMarco J.J.
        • Cagnon C.H.
        • Zhang D.
        • Angel E.
        • et al.
        The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners.
        Med Phys. 2010; 37: 1816-1825
        • Papadimitroulas P.
        • Erwin W.D.
        • Iliadou V.
        • Kostou T.
        • Loudos G.
        • Kagadis G.C.
        A personalized, Monte Carlo-based method for internal dosimetric evaluation of radiopharmaceuticals in children.
        Med Phys. 2018; 3939–49
        • Visvikis D.
        • Bardies M.
        • Chiavassa S.
        • Danford C.
        • Kirov A.
        • Lamare F.
        • et al.
        Use of the GATE Monte Carlo package for dosimetry applications.
        Nucl Instrum Meth Phys Res, Sect A. 2006; 569: 335-340