Advertisement
Original paper| Volume 65, P172-180, September 2019

Download started.

Ok

A Geant4 simulation for three-dimensional proton imaging of microscopic samples

Published:September 05, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.08.022

      Highlights

      • A Geant4 simulation was developed for three-dimensional proton micro-imaging.
      • Several phantoms are available, including a Caenorhabditis elegans.
      • 3D mass density distribution was obtained from proton transmission microtomography.
      • Element content distribution was obtained from X-ray emission microtomography.
      • 20 primary protons per shot is an optimal number for transmission microtomography.

      Abstract

      Proton imaging can be carried out on microscopic samples by focusing the beam to a diameter ranging from a few micrometers down to a few tens of nanometers, depending on the required beam intensity and spatial resolution. Three-dimensional (3D) imaging by tomography is obtained from proton transmission (STIM: Scanning Transmission Ion Microscopy) and/or X-ray emission (PIXE: Particle Induced X-ray Emission). In these experiments, the samples are dehydrated for under vacuum analysis. In situ quantification of nanoparticles has been carried out at CENBG in the frame of nanotoxicology studies, on cells and small organisms used as biological models, especially on Caenorhabditis elegans (C. elegans) nematodes. Tomography experiments reveal the distribution of mass density and chemical content (in g.cm−3) within the analyzed volume. These density values are obtained using an inversion algorithm. To investigate the effect of this data reduction process, we defined different numerical phantoms, including a (dehydrated) C. elegans phantom whose geometry and density were derived from experimental data. A Monte Carlo simulation based on the Geant4 toolkit was developed. Using different simulation and reconstruction conditions, we compared the resulting tomographic images to the initial numerical reference phantom. A study of the relative error between the reconstructed and the reference images lead to the result that 20 protons per shot can be considered as an optimal number for 3D STIM imaging. Preliminary results for PIXE tomography are also presented, showing the interest of such numerical phantoms to produce reference data for future studies on X-ray signal attenuation in thick samples.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cormack M.
        • Koehler A.M.
        Quantitative proton tomography: preliminary experiments.
        Phys. Med. Biol. 1976; 21: 560-569https://doi.org/10.1088/0031-9155/21/4/007
        • Michelet C.
        • Barberet P.
        • Moretto P.
        • Seznec H.
        Development and applications of STIM- and PIXE-tomography: a review.
        Nucl. Instr. Meth. B. 2015; 363: 55-60https://doi.org/10.1016/j.nimb.2015.08.070
        • Michelet C.
        • Barberet P.
        • Desbarats P.
        • Giovannelli J.-F.
        • Schou C.
        • Chebil I.
        • et al.
        An implementation of the NiftyRec medical imaging library for PIXE-tomography reconstruction.
        Nucl. Instr. Meth. B. 2017; 404: 131-139https://doi.org/10.1016/j.nimb.2017.01.067
        • Guo N.
        • Lu H.Y.
        • Wang Q.
        • Meng J.
        • Gao D.Z.
        • Zhang Y.J.
        • et al.
        A dual-PIXE tomography setup for reconstruction of Germanium in ICF target.
        Nucl. Instr. Meth. B. 2017; 404: 162-166https://doi.org/10.1016/j.nimb.2017.04.041
        • Beasley D.G.
        • Alves L.C.
        • Barberet Ph.
        • Bourret S.
        • Devès G.
        • Gordillo N.
        • et al.
        A comparison of quantitative reconstruction techniques for PIXE-tomography analysis applied to biological samples.
        Nucl. Instr. Meth. B. 2014; 331: 248-252https://doi.org/10.1016/j.nimb.2015.08.070
        • Satoh T.
        • Yokoyama A.
        • Kitamura A.
        • Ohkubo T.
        • Ishii Y.
        • Takahatake Y.
        • et al.
        Particle induced X-ray emission-computed tomography analysis of an adsorbent for extraction chromatography.
        Nucl. Instr. Meth. B. 2016; 371: 419-423https://doi.org/10.1016/j.nimb.2015.09.076
        • Lu H.Y.
        • He X.D.
        • Meng J.
        • Guo N.
        • Rong C.C.
        • Zhang W.
        • et al.
        Reconstruction of Ge spatial distribution in ICF target using PIXE-T.
        Fusion Eng Des. 2016; 113: 43-50https://doi.org/10.1016/j.fusengdes.2016.10.006
        • Agostinelli S.
        • et al.
        by the Geant4 Collaboration. Geant4 – a simulation toolkit.
        Nucl. Instr. Meth. A. 2003; 506: 250-303https://doi.org/10.1016/S0168-9002(03)01368-8
        • Allison J.
        • et al.
        by the Geant4 Collaboration. Geant4 developments and applications.
        IEEE Trans. Nucl. Sci. 2006; 53: 270-278https://doi.org/10.1109/TNS.2006.869826
        • Allison J.
        • et al.
        by the Geant4 collaboration. Recent developments in Geant4.
        Nucl. Instr. Meth. A. 2016; 835: 186-225https://doi.org/10.1016/j.nima.2016.06.125
        • Sechopoulos I.
        • Rogers D.W.O.
        • Bazalova-Carter M.
        • Bolch W.E.
        • Heath E.C.
        • McNitt-Gray M.F.
        • et al.
        RECORDS: improved reporting of montE CarlO RaDiation transport Studies: report of the AAPM Research Committee Task Group 268.
        Med. Phys. 2018; 45: e1-e5https://doi.org/10.1002/mp.12702
        • Arbor N.
        • Dauvergne D.
        • Dedes G.
        • Létang J.M.
        • Parodi K.
        • Quiñones C.T.
        • et al.
        Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams.
        Phys. Med. Biol. 2015; 60: 7585-7599https://doi.org/10.1088/0031-9155/60/19/7585
        • Ardenfors O.
        • Henry T.
        • Gudowska I.
        • Poludniowski G.
        • Dasu A.
        Organ doses from a proton gantry-mounted cone-beam computed tomography system characterized with MCNP6 and GATE.
        Phys. Med. 2018; 53: 56-61https://doi.org/10.1016/j.ejmp.2018.08.011
        • Giacometti V.
        • Guatelli S.
        • Bazalova-Carter M.
        • Rosenfeld A.B.
        • Schulte R.W.
        Development of a high resolution voxelised head phantom for medical physics applications.
        Phys. Med. 2017; 33: 182-188https://doi.org/10.1016/j.ejmp.2017.01.007
        • Bashkirov V.A.
        • Johnson R.P.
        • Sadrozinski H.F.-W.
        • Schulte R.W.
        Development of proton computed tomography detectors for applications in hadrontherapy.
        Nucl. Instr. Meth. A. 2016; 809: 120-129https://doi.org/10.1016/j.nima.2015.07.066
        • Pettersen H.E.S.
        • Alme J.
        • Barnaföldi G.G.
        • Barthel R.
        • van den Brink A.
        • Chaar M.
        • et al.
        Design optimization of a pixel-based range telescope for proton computed tomography.
        Phys. Med. 2019; 63: 87-97https://doi.org/10.1016/j.ejmp.2019.05.026
        • Cirrone G.A.P.
        • Bucciolini M.
        • Bruzzi M.
        • Candiano G.
        • Civinini C.
        • Cuttone G.
        • et al.
        Monte Carlo evaluation of the Filtered Back Projection method for image reconstruction in proton computed tomography.
        Nucl. Instr. Meth. A. 2011; 658: 78-83https://doi.org/10.1016/j.nima.2011.05.061
        • Biegun A.K.
        • van Goethem M.J.
        • van der Graaf E.R.
        • van Beuzekom M.
        • Koffeman E.N.
        • Nakaji
        • et al.
        The optimal balance between quality and efficiency in proton radiography imaging technique at various proton beam energies: A Monte Carlo study.
        Phys. Med. 2017; 41: 141-146https://doi.org/10.1016/j.ejmp.2017.08.006
        • Incerti S.
        • Barberet Ph.
        • Devès G.
        • Michelet C.
        • Francis Z.
        • Ivantchenko V.
        • et al.
        Comparison of experimental proton-induced fluorescence spectra for a selection of thin high-Z samples with Geant4 Monte Carlo simulations.
        Nucl. Instr. Meth. B. 2015; 358: 210-222https://doi.org/10.1016/j.nimb.2015.06.029
      1. J. Apostolakis, S. Giani, M. Maire, P. Nieminen, M.G. Pia, L. Urban, Geant4 low energy electromagnetic models for electrons and photons. INFN/AE-99/18 September 1999; 1–15. https://dx.doi.org/ 10.15161/oar.it/1448986129.49.

        • Bearden J.A.
        X-Ray wavelengths.
        Rev. Mod. Phys. 1967; 39: 78-124https://doi.org/10.1103/RevModPhys. 39.78
        • Le Trequesser Q.
        • Saez G.
        • Devès G.
        • Michelet C.
        • Barberet P.
        • Delville M.H.
        • et al.
        In situ titanium dioxide nanoparticles quantitative microscopy in cells and in C. elegans using nuclear microprobe analysis.
        Nucl. Instr. Meth. B. 2014; 341: 58-64https://doi.org/10.1016/j.nimb.2014.06.031
        • Le Trequesser Q.
        • Devès G.
        • Saez G.
        • Daudin L.
        • Barberet P.
        • Michelet C.
        • et al.
        Single cell in situ detection and quantification of metal oxide nanoparticles using multimodal correlative microscopy.
        Anal Chem. 2014; 86: 7311-7319https://doi.org/10.1021/ac501318c
        • Muggiolu G.
        • Simon M.
        • Devès G.
        • Barberet P.
        • Michelet C.
        • Delville M.H.
        • et al.
        In situ detection and single cell quantification of metal oxide nanoparticles using nuclear microprobe analysis.
        J Vis Exp. 2018; 132e55041https://doi.org/10.3791/55041
        • Carmona A.
        • Devès G.
        • Ortega R.
        Quantitative micro-analysis of metal ions in subcellular compartments of cultured dopaminergic cells by combination of three ion beam techniques.
        Anal. Bioanal. Chem. 2008; 390: 1585-1594https://doi.org/10.1007/s00216-008-1866-6
        • Habchi C.
        • Gordillo N.
        • Bourret S.
        • Barberet Ph.
        • Jovet C.
        • Moretto Ph.
        • et al.
        Beyond filtered backprojection: a reconstruction software package for ion beam microtomography data.
        Nucl. Instr. Meth. B. 2013; 295: 42-49https://doi.org/10.1016/j.nimb.2012.10.006
        • Michelet C.
        • Barberet Ph.
        • Devès G.
        • Bouguelmouna B.
        • Bourret S.
        • Delville M.-H.
        • et al.
        Quantitative reconstruction of PIXE-tomography data for thin samples using GUPIX X-ray emission yield.
        Nucl. Instr. Meth. B. 2015; 348: 92-99https://doi.org/10.1016/j.nimb.2014.11.035
        • Devès G.
        • Ortega R.
        Subcellular mass determination by 4He+ energy-loss micro-spectrometry.
        Anal. Bioanal. Chem. 2002; 374: 390-394https://doi.org/10.1007/s00216-002-1511-8
        • Devès G.
        • Isaure M.P.
        • Le Lay P.
        • Bourguignon J.
        • Ortega R.
        Fully quantitative imaging of chemical elements in Arabidopsis thaliana tissues using STIM, PIXE and RBS.
        Nucl. Instr. Meth. B. 2005; 231: 117-122https://doi.org/10.1016/j.nimb.2005.01.044
        • Okada S.
        • Murakami K.
        • Amako K.
        • Sasaki T.
        • Incerti S.
        • Karamitros M.
        • et al.
        GPU acceleration of Monte Carlo simulation at the cellular and DNA levels.
        Smart Innovation, Syst. Technol. 2016; 45: 323-332https://doi.org/10.1007/978-3-319-23024-5_29
        • Overley J.C.
        • Schofield R.M.S.
        • MacDonald J.D.
        • Lefevre J.H.
        Energy-loss image formation in scanning transmission ion microscopy.
        Nucl. Instr. Meth. B. 1988; 30: 337-341https://doi.org/10.1016/0168-583X(88)90022-5
      2. W.S. Snyder, M.J. Cook, E.S. Nasset, L.R. Karhausen, G.P. Parry, Howells, I.H. Tipton, Report of the Task Group on Reference Man. ICRP Publication 23, 1975, Pergamon Press, Oxford. http://www.icrp.org/publication.asp?id=ICRP%20Publication%2023.

        • Lefevre H.W.
        • Schofield R.M.S.
        Scanning transmission ion microscopy as it complements particle induced X-ray emission microanalysis.
        Scanning Microsc. 1987; 1 (PMID:3116664): 879-889
        • Ng Y.K.
        • Orlic I.
        • Liew S.C.
        • Loh K.K.
        • Tang S.M.
        • Osipowicz T.
        • et al.
        A PIXE micro-tomography experiment using MLEM algorithm.
        Nucl. Instr. Meth. B. 1997; 130: 109-112https://doi.org/10.1016/S0168-583X(97)00303-0
        • Rueden C.T.
        • Schindelin J.
        • Hiner M.C.
        • et al.
        Image J2: ImageJ for the next generation of scientific image data.
        BMC Bioinf. 2017; 18: 529https://doi.org/10.1186/s12859-017-1934-z
        • Sadrozinski H.F.-W.
        • Johnson R.P.
        • Macafee S.
        • Plumb A.
        • Steinberg D.
        • Zatserklyaniy A.
        • et al.
        Development of a head scanner for proton.
        CT. Nucl. Instr. Meth. A. 2013; 699: 205-210https://doi.org/10.1016/j.nima.2012.04.029