Advertisement
Technical note| Volume 65, P219-226, September 2019

Download started.

Ok

Robustness evaluation of Intensity Modulated Proton Therapy plans using Dose Volume Population Histogram

Published:September 14, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.09.070

      Highlights

      • In IMPT, the minimum dose to PTV does not represent the minimum dose to CTV.
      • OAR DVH underestimates OAR dose receiving under geometrical uncertainties.
      • OAR DVH does not match any confidence levels from Dose Volume Population Histogram.
      • Dose Volume Population Histogram tool helps planners evaluate the plans reliably.

      Abstract

      Purpose

      Under geometrical uncertainties, different plan evaluation methods have been suggested but the dose distribution at a specified confidence level being highly desirable is lacking. In this work, we used the DVPH (Dose Volume Population Histogram) tool to evaluate the dose distribution of CTVs and OARs (Organs at Risk) and validate the PTV concept at a certain confidence level.

      Methods

      The plans were evaluated using PTV DVH and the DVPH approach. The DVPH approach is based on statistical analyzing of multiple CTV DVHs under geometrical errors with corresponding occurring probabilities. The random and systematic geometrical errors, assumed to follow a Gaussian distribution, are simulated by shifting the CT images.

      Results

      For target doses, the results showed that the minimum dose to PTV does not represent the minimum dose to the CTV. For two prostate cases, the minimum doses reduced from 98% and 95% of prescribed dose from PTV DVH to 89% and 92% of prescribed dose from CTV 90% CL-DVPH (90% Confidence Level-DVPH). This reduction was also seen in head and neck cases, from 95% to 68% and 74% of prescribed dose. For OAR doses, OAR DVHs underestimated the OAR dose receiving.

      Conclusions

      With the DVPH tool, the results showed that the minimum dose to the PTV is not a representative of the minimum dose to the CTV in IMPT at the 90% confidence level. The OAR DVH does not match any OAR CL-DVPHs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. International Commission on Radiation Units and Measurements. Prescribing, Recording and Reporting Photon Beam Therapy. ICRU Report 50. Bethesda, MD: ICRU, 1993.

        • Stroom J.C.
        • de Boer H.C.
        • Huizenga H.
        • Visser A.G.
        Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability.
        Int J Radiat Oncol Biol Phys. 1999; 43: 905-919
        • van Herk M.
        • Remeijer P.
        • Rasch C.
        • Lebesque J.V.
        The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy.
        Int J Radiat Oncol Biol Phys. 2000; 47: 1121-1135
        • Thomas Simon J.
        Margins for treatment planning of proton therapy.
        Phys Med Biol. 2006; 51: 1491-1501
        • Lomax A.J.
        Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions.
        Phys Med Biol. 2008; 53: 1043-1056
        • Albertini F.
        • Hug E.B.
        • Lomax A.J.
        Is it necessary to plan with safety margins for actively scanned proton therapy?.
        Phys Med Biol. 2011; 56: 4399-4413
        • Henríquez F.C.
        • Castrillón S.V.
        A novel method for the evaluation of uncertainty in dose-volume histogram computation.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1263-1271
        • Park P.C.
        • Cheung J.P.
        • Zhu X.R.
        • Lee A.K.
        • Sahoo N.
        • Tucker S.L.
        • et al.
        Statistical assessment of proton treatment plans under setup and range uncertainties.
        Int J Radiat Oncol Biol Phys. 2013; 86: 1007-1013
        • Nguyen T.B.
        • Hoole A.C.
        • Burnet N.G.
        • Thomas S.J.
        Dose-volume population histogram: a new tool for evaluating plans whilst considering geometrical uncertainties.
        Phys Med Biol. 2009; 54: 935-947
        • Michalski J.M.
        • Moughan J.
        • Purdy J.A.
        • Bosch W.R.
        • Bahary J.
        • Lau H.
        • et al.
        Initial results of a phase 3 randomized study of high dose 3DCRT/IMRT versus standard dose 3D-CRT/IMRT in patients treated for localized prostate cancer (RTOG 0126).
        Int J Radiat Oncol Biol Phys. 2014; 90: 1263
        • Lee N.
        • Harris J.
        • Garden A.S.
        • Straube W.
        • Glisson B.
        • Xia P.
        • et al.
        Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225.
        J Clin Oncol. 2009; 27: 3684-3690
        • Lilenbaum R.
        • Komaki R.
        • Martel M.K.
        Radiation therapy oncology group (RTOG) Protocol 0623: a phase II trial of combined modality therapy with growth factor support for patients with limited stage small cell lung.
        Cancer. 2008;
        • Schell S.
        • Wilkens J.J.
        Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams.
        Med Phys. 2010; 37: 5330-5340
        • Deasy J.O.
        • Blanco A.I.
        • Clark V.H.
        CERR: a computational environment for radiotherapy research.
        Med Phys. 2003; 30: 979-985
        • Hong L.
        • Goitein M.
        • Bucciolini M.
        • Comiskey R.
        • Gottschalk B.
        • Rosenthal S.
        • et al.
        A pencil beam algorithm for proton dose calculations.
        Phys Med Biol. 1996; 41: 1305-1330
        • Gottschalk B.
        • Koehler A.M.
        • Schneider R.J.
        • Sisterson J.M.
        • Wagner M.S.
        Multiple Coulomb scattering of 160 MeV protons.
        Nucl Instrum Meth Phys Res B. 1993; 74: 467-490
        • Padilla-Cabal F.
        • Georg D.
        • Fuchs H.
        A pencil beam algorithm for magnetic resonance image-guided proton therapy.
        Med Phys. 2018; 45: 2195-2204
        • da Silva Joakim
        • Ansorge Richard
        • Jena Rajesh
        Fast pencil beam dose calculation for proton therapy using a double gaussian beam model.
        Front Oncol. 2015; 5: 281
        • da Silva J.
        • Ansorge R.
        • Jena R.
        Sub-second pencil beam dose calculation on GPU for adaptive proton therapy.
        Phys Med Biol. 2015; 60: 4777-4795
        • Tommasino Francesco
        • Fellin Francesco
        • Lorentini Stefano
        • Farace Paolo
        Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer.
        Phys Med. 2018; 50: 7-12
        • Liang Xiaoying
        • Bradley Julie A.
        • Zheng Dandan
        • Rutenberg Michael
        • Vega Raymond Mailhot
        • Mendenhall Nancy
        • et al.
        The impact of dose algorithms on tumor control probability in intensity-modulated proton therapy for breast cancer.
        Phys Med. 2019; 61: 52-57
      2. Nutting CM, Bidmead M, Harrington KJ, Henkm JM. Geometric uncertainties in radiotherapy of head and neck. Geometric uncertainties in Radiotherapy (London:BIR) 2003:127-41.

        • Deurloo K.E.
        • Steenbakkers R.J.
        • Zijp L.J.
        • de Bois J.A.
        • Nowak P.J.
        • Rasch C.R.
        • et al.
        Quantification of shape variation of prostate and seminal vesicles during external beam radiotherapy.
        Int J Radiat Oncol Biol Phys. 2005; 61: 228-238
        • Stasi M.
        • Munoz F.
        • Fiorino C.
        • Pasquino M.
        • Baiotto B.
        • Marini P.
        • et al.
        Emptying the rectum before treatment delivery limits the variations of rectal dose – volume parameters during 3DCRT of prostate cancer.
        Radiother Oncol. 2006; 80: 363-370
        • Hoogeman M.S.
        • van Herk M.
        • de Bois J.
        • Muller-Timmermans P.
        • Koper P.C.
        • Lebesque J.V.
        Quantification of local rectal wall displacements by virtual rectum unfolding.
        Radiother Oncol. 2004; 70: 21-30
        • Price G.J.
        • Moore C.J.
        A method to calculate coverage probability from uncertainties in radiotherapy via a statistical shape model.
        Phys Med Biol. 2007; 52: 1947-1965