Advertisement

Optimal b-values for diffusion kurtosis imaging of the liver and pancreas in MR examinations

Published:October 07, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.09.238

      Highlights

      • Reduction of number of b-values from 7 to 4 does not affect DKI parameters.
      • Set of four b-values: 0, 500, 1500 and 2000 s/mm2 may be applied in routine practice.
      • DKI acquisition time can be shortened by up to 36% compared to time for 7 b-values.

      Abstract

      Purpose

      The objective was to optimise the number of b-values for diffusion kurtosis imaging (DKI) of the liver and pancreas in MR examinations to ensure reliable results with the shortest possible acquisition time.

      Methods

      Twenty healthy volunteers underwent DKI at 3.0 T Siemens Magnetom Skyra using 7 b-values (b = 0, 200, 500, 750, 1000, 1500, 2000 s/mm2). The regions of interest (ROIs) were placed in the liver (right lobe, left lobe) and pancreas (head, tail). DKI parameters (Dapp, Kapp) for ROIs were calculated for 7 b-values utilising the nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. All calculations were repeated for ten subsets of data, with the number of b-values reduced to 4. DKI parameters calculated for subsets were compared with parameters calculated for all 7 b-values.

      Results

      The correlation coefficient between DKI parameters calculated for 7 b-values and subsets ranged from 0.65 to 1.00. The coefficient of variation (CoV) of DKI parameters calculated for a group of volunteers varied from 8% to 42% and was not affected by the reduction of the b-values number. Only one subset of data (b = 0, 500, 1500 and 2000 s/mm2) simultaneously met two criteria: no statistical difference (p < 0.05) from results obtained for 7 b-values and very good correlation with them.

      Conclusions

      DKI acquisition with 4 b-values (b = 0, 500, 1500 and 2000 s/mm2), compared to DKI acquisition utilising 7 b-values, allowed for the reduction of acquisition time by 36%, without affecting the calculated DKI parameters.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sheng R.F.
        • Wang H.Q.
        • Yang L.
        • Jin K.P.
        • Xie T.H.
        • Chen C.Z.
        • et al.
        Diffusion kurtosis imaging and diffusion-weighted imaging in assessment of liver fibrosis stage and necroinflammatory activity.
        Abdom Radiol (New York). 2017; 42: 1176-1182https://doi.org/10.1007/s00261-016-0984-4
        • Rosenkrantz A.B.
        • Padhani A.R.
        • Chenevert T.L.
        • Koh D.-M.
        • De Keyzer F.
        • Taouli B.
        • et al.
        Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice.
        Magn Reson Imaging. 2015; 42: 1190-1202https://doi.org/10.1002/jmri.24985
        • Goshima S.
        • Kanematsu M.
        • Noda Y.
        • Kondo H.
        • Watanabe H.
        • Bae K.T.
        Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma.
        AJR Am J Roentgenol. 2015; 204: W543-W549https://doi.org/10.2214/AJR.14.13235
        • Rosenkrantz A.B.
        • Sigmund E.E.
        • Winnick A.
        • et al.
        Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants.
        Magn Reson Imaging. 2012; 30: 1534-1540https://doi.org/10.1016/j.mri.2012.04.020
        • Jensen J.H.
        • Helpern J.A.
        • Ramani A.
        • Lu H.
        • Kaczynski K.
        Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic.
        Magn Reson Med. 2005; 53: 1432-1440https://doi.org/10.1002/mrm.20508
        • Pentang G.
        • Lanzman R.S.
        • Heusch P.
        • Müller-Lutz A.
        • Blondin D.
        • Antoch G.
        Diffusion kurtosis imaging of the human kidney: a feasibility study.
        Magn Reson Imaging. 2014; 32: 413-420https://doi.org/10.1016/j.mri.2014.01.006
        • Wittsack H.J.
        • Lanzman R.S.
        • Mathys C.
        • Janssen H.
        • Mödder U.
        • Blondin D.
        Statistical evaluation of diffusion-weighted imaging of the human kidney.
        Magn Reson Med. 2010; 64: 616-622https://doi.org/10.1002/mrm.22436
        • Kartalis N.
        • Manikis G.C.
        • Loizou L.
        • Albiin N.
        • Zöllner F.G.
        • Del Chiaro M.
        • et al.
        Diffusion-weighted MR imaging of pancreatic cancer: a comparison of mono-exponential, bi-exponential and non-Gaussian kurtosis models.
        Eur J Radiol Open. 2016; 3: 79-85https://doi.org/10.1016/j.ejro.2016.04.002
        • Rosenkrantz A.B.
        • Sigmund E.E.
        • Winnick A.
        • Niver B.E.
        • Spieler B.
        • Morgan G.R.
        • et al.
        Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants.
        Magn Reson Imaging. 2012; 30: 1534-1540https://doi.org/10.1016/j.mri.2012.04.020
      1. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.URL https://www.R-project.org/; 2016.

        • Yokosawa S.
        • Sasaki M.
        • Bito Y.
        • Ito K.
        • Yamashita F.
        • Goodwin J.
        • et al.
        Optimization of scan parameters to reduce acquisition time for diffusion kurtosis imaging at 1.5T.
        Magn Reson Med Sci. 2016; 15: 41-48https://doi.org/10.2463/mrms.2014-0139
        • Jensen J.H.
        • Helpern J.A.
        MRI quantification of non-Gaussian water diffusion by kurtosis analysis.
        NMR Biomed. 2010; 23: 698-710https://doi.org/10.1002/nbm.1518
        • Zhou I.Y.
        • Guo Y.
        • Igarashi T.
        • Wang Y.
        • Mandeville E.
        • Chan S.-T.
        • et al.
        Fast diffusion kurtosis imaging (DKI) with Inherent COrrelation-based Normalization (ICON) enhances automatic segmentation of heterogeneous diffusion MRI lesion in acute stroke.
        NMR Biomed. 2016; 29: 1670-1677https://doi.org/10.1002/nbm.3617
        • Merisaari H.
        • Jambor I.
        Optimization of b-value distribution for four mathematical models of prostate cancer diffusion-weighted imaging using b values up to 2000 s/mm (2): simulation and repeatability study.
        Magn Reson Med. 2015; 73: 1954-1969https://doi.org/10.1002/mrm.25310
        • Budjan J.
        • Sauter E.A.
        • Zoellner F.G.
        • Lemke A.
        • Wambsganss J.
        • Schoenberg S.O.
        Attenberger UI Diffusion kurtosis imaging of the liver at 3 Tesla: in vivo comparison to standard diffusion-weighted imaging.
        Acta Radiol. 2018; 59https://doi.org/10.1177/0284185117706608
        • Huang L.
        • Li X.H.
        • Huang S.Y.
        • Zhang Z.W.
        • Yang X.F.
        • Lin J.J.
        • et al.
        Diffusion kurtosis MRI Versus conventional diffusion-weighted imaging for evaluating inflammatory activity in Crohn’s disease.
        J Magn Reson Imaging. 2018; 47: 702-709https://doi.org/10.1002/jmri.25768
        • Wang W.T.
        • Yang L.
        • Yang Z.X.
        • Hu X.X.
        • Ding Y.
        • Yan X.
        • et al.
        Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging.
        Radiology. 2018; 286: 571-580https://doi.org/10.1148/radiol.2017170515
        • Muhi A.
        • Ichikawa T.
        • Motosugi U.
        • Sano K.
        • Matsuda M.
        • Kitamura T.
        • et al.
        High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma.
        J Magn Reson Imaging. 2009; 30: 1005-1011https://doi.org/10.1002/jmri.21931
        • Hu G.
        • Liang W.
        • Wu M.
        • Chan Q.
        • Li Y.
        • Xu J.
        • et al.
        Staging of rat liver fibrosis using monoexponential, stretched exponential and diffusion kurtosis models with diffusion weighted imaging- magnetic resonance.
        Oncotarget. 2018; 9: 2357-2366https://doi.org/10.18632/oncotarget.23413
        • Shen L.
        • Zhou G.
        • Tang F.
        • Lin Y.
        • Zhou J.
        • Lv P.
        • et al.
        MR diffusion kurtosis imaging for cancer diagnosis: a meta-analysis of the diagnostic accuracy of quantitative kurtosis value and diffusion coefficient.
        Clin Imaging. 2018; 9: 44-56https://doi.org/10.1016/j.clinimag.2018.06.005
        • Maximov I.I.
        • Tonoyan A.S.
        • Pronin I.N.
        Differentiation of glioma malignancy grade using diffusion MRI.
        Phys Med. 2017; 40: 24-32https://doi.org/10.1016/j.ejmp.2017.07.002
        • Dietrich O.
        • Raya J.G.
        • Reeder S.B.
        • Reiser M.F.
        • Schoenberg S.O.
        Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters.
        J Magn Reson Imaging. 2007; 26: 375-385https://doi.org/10.1002/jmri.20969
        • Landman B.A.
        • Bazin P.
        • Smith S.A.
        • Prince J.L.
        Robust estimation of spatially variable noise fields.
        Magn Reson Med. 2009; 62: 500-509https://doi.org/10.1002/mrm.22013