Advertisement

Real-time control of respiratory motion: Beyond radiation therapy

Published:October 03, 2019DOI:https://doi.org/10.1016/j.ejmp.2019.09.241

      Highlights

      • Motion management (MM) is key in quantitative imaging and interventional procedures.
      • MM is well known in radiation oncology, but less information is available elsewhere.
      • Interested fields include multiparametric MRI, molecular imaging and tumor ablation.

      Abstract

      Motion management in radiation oncology is an important aspect of modern treatment planning and delivery. Special attention has been paid to control respiratory motion in recent years. However, other medical procedures related to both diagnosis and treatment are likely to benefit from the explicit control of breathing motion. Quantitative imaging – including increasingly important tools in radiology and nuclear medicine – is among the fields where a rapid development of motion control is most likely, due to the need for quantification accuracy. Emerging treatment modalities like focussed-ultrasound tumor ablation are also likely to benefit from a significant evolution of motion control in the near future. In the present article an overview of available respiratory motion systems along with ongoing research in this area is provided. Furthermore, an attempt is made to envision some of the most expected developments in this field in the near future.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dieterich S.
        • Green O.
        • Booth J.
        SBRT targets that move with respiration.
        Phys Med. 2018; 56: 19-24https://doi.org/10.1016/j.ejmp.2017.05.071
        • Kalet A.M.
        • Cao N.
        • Smith W.P.
        • Young L.
        • Meyer J.
        Accuracy and stability of deep inspiration breath hold in gated breast radiotherapy – a comparison of two tracking and guidance systems.
        Phys Med. 2019; 60: 174-181
        • Caillet V.
        • Booth J.T.
        • Keall P.
        IGRT and motion management during lung SBRT delivery.
        Phys Med. 2017; 44: 113-122
        • Stowe H.
        • Ogake S.
        • Sharma S.
        • Kelly S.
        • McDonald M.
        • Stanley K.
        • et al.
        Improved respiratory motion tracking through a novel fiducial marker placement guidance system during electromagnetic navigational bronchoscopy (ENB).
        Radiat Oncol. 2019; 14: 124https://doi.org/10.1186/s13014-019-1306-0
        • Uchinami Y.
        • Suzuki R.
        • Katoh N.
        • Taguchi H.
        • Yasuda K.
        • Miyamoto N.
        • et al.
        Impact of organ motion on volumetric and dosimetric parameters in stomach lymphomas treated with intensity‐modulated radiotherapy.
        J Appl Clin Med Phys. 2019; ([Epub ahead of print])https://doi.org/10.1002/acm2.12681
        • Bertholet J.
        • Knopf A.
        • Eiben B.
        • McClelland J.
        • Grimwood A.
        • Harris E.
        • et al.
        Real-time intrafraction motion monitoring in external beam radiotherapy.
        Phys Med Biol. 2019; 64: 15TR01https://doi.org/10.1088/1361-6560/ab2ba8
        • Yoganathan S.A.
        • Maria Das K.J.
        • Agarwal A.
        • Kumar S.
        Magnitude, Impact, and Management of Respiration-induced Target Motion in Radiotherapy Treatment: A Comprehensive Review.
        J Med Phys. 2017; 42: 101-115https://doi.org/10.4103/jmp.JMP_22_17
        • Hörner-Rieber J.
        • Bernhardt D.
        • Blanck O.
        • Duma M.
        • Eich H.T.
        • Gerum S.
        • et al.
        Long-term Follow-up and Patterns of Recurrence of Patients With Oligometastatic NSCLC Treated With Pulmonary SBRT.
        Clinical Lung Cancer. 2019; ([Epub ahead of print])https://doi.org/10.1016/j.cllc.2019.06.024
        • Yu T.
        • Shin I.S.
        • Yoon W.S.
        • Rim C.H.
        Stereotactic Body Radiotherapy for Centrally Located Primary Non-Small-Cell Lung Cancer: A Meta-Analysis.
        Clin Lung Cancer. 2019; 20: e452-e462https://doi.org/10.1016/j.cllc.2019.02.023
        • Arnett A.L.H.
        • Mou B.
        • Owen D.
        • Park S.S.
        • Nelson K.
        • Hallemeier C.L.
        • et al.
        Long-term Clinical Outcomes and Safety Profile of SBRT for Centrally Located NSCLC.
        Adv Radiat Oncol. 2019; 4: 422-428https://doi.org/10.1016/j.adro.2019.01.002
        • Kann B.H.
        • Verma V.
        • Stahl J.M.
        • Ross R.
        • Dosoretz A.P.
        • Shafman T.D.
        • et al.
        Multi-institutional analysis of stereotactic body radiation therapy for operable early-stage non-small cell lung carcinoma.
        Radiother Oncol. 2019; 134: 44-49https://doi.org/10.1016/j.radonc.2019.01.027
        • Lee P.
        • Loo Jr., B.W.
        • Biswas T.
        • Ding G.X.
        • El Naqa I.M.
        • Jackson A.
        • et al.
        Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer.
        Int. J. Radiation Oncol. Biol. Phys. 2019; ([Epub ahead of print])https://doi.org/10.1016/j.ijrobp.2019.03.045
        • Kubo H.D.
        • Hill B.C.
        Respiration gated radiotherapy treatment: a technical study.
        Phys Med Biol. 1996; 41: 83-91
        • Berbeco R.I.
        • Nishioka S.
        • Shirato H.
        • Chen G.T.Y.
        • Jiang S.B.
        Residual motion of lung tumours in gated radiotherapy with external respiratory surrogates.
        Phys Med Biol. 2005; 50: 3655-3667
        • Mori S.
        A real-time, single-exposure, dual-energy subtraction mask for markerless tumor tracking in radiotherapy: proof of concept.
        Phys Med. 2019; 63: 63-69https://doi.org/10.1016/j.ejmp.2019.05.015
        • Yamada T.
        • Miyamoto N.
        • Matsuura T.
        • Takao S.
        • Fujii Y.
        • Matsuzaki Y.
        • et al.
        Optimization and evaluation of multiple gating beam delivery in a synchrotron-based proton beam scanning system using a real-time imaging technique.
        Phys Med. 2016; 32: 932-937https://doi.org/10.1016/j.ejmp.2016.06.002
        • Ciocca M.
        • Mirandola A.
        • Molinelli S.
        • Russo S.
        • Mastella E.
        • Vai A.
        • et al.
        Commissioning of the 4-D treatment delivery system for organ motion management in synchrotron-based scanning ion beams.
        Phys Med. 2016; 32: 1667-1671https://doi.org/10.1016/j.ejmp.2016.11.107
        • Schweikard A.
        • Shiomi H.
        • Adler J.
        Respiration tracking in radiosurgery.
        Med Phys. 2004; 31: 2738-2741
        • Depuydt T.
        • Verellen D.
        • Haas O.
        • Gevaert T.
        • Linthout N.
        • Duchateau M.
        • et al.
        Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system.
        Radiother Oncol. 2011; 98: 365-372
        • Mastella E.
        • Vigorito S.
        • Rondi E.
        • Piperno G.
        • Ferrari A.
        • Strata E.
        • et al.
        Validation of a pretreatment delivery quality assurance method for the CyberKnife Synchrony system.
        Med Phys. 2016; 43: 4565https://doi.org/10.1118/1.4955437
        • Sawant A.
        • Venkat R.
        • Srivastava V.
        • Carlson D.
        • Povzner S.
        • Cattell H.
        • et al.
        Management of three-dimensional intrafraction motion through real-time DMLC tracking.
        Med Phys. 2008; 35: 2050-2206
        • Tacke M.B.
        • Nill S.
        • Krauss A.
        • Oelfke U.
        Real-time tumor tracking: automatic compensation of target motion using the Siemens 160 MLC.
        Med Phys. 2010; 37: 753-761
        • Jöhl A.
        • Bogowicz M.
        • Ehrbar S.
        • Guckenberger M.
        • Klöck S.
        • Meboldt M.
        • et al.
        Body motion during dynamic couch tracking with healthy volunteers.
        Phys Med Biol. 2018; 64015001https://doi.org/10.1088/1361-6560/aaf361
        • Grassberger C.
        • Dowdell S.
        • Lomax A.
        • Sharp G.
        • Shackleford J.
        • Choi N.
        • et al.
        Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer.
        Int J Radiat Oncol Biol Phys. 2013; 86: 380-386https://doi.org/10.1016/j.ijrobp.2013.01.024
        • Traini G.
        • Battistoni G.
        • Bollella A.
        • Collamati F.
        • De Lucia E.
        • Faccini R.
        • et al.
        Design of a new tracking device for on-line beam range monitor in carbon therapy.
        Phys Med. 2017; 34: 18-27https://doi.org/10.1016/j.ejmp.2017.01.004
        • Mori S.
        • Knopf A.C.
        • Umegaki K.
        Motion management in particle therapy.
        Med Phys. 2018; 45: e994-e1010https://doi.org/10.1002/mp.12679
        • Flejmer A.M.
        • Chehrazi B.
        • Josefsson D.
        • Toma-Dasu I.
        • Dasu A.
        Impact of physiological breathing motion for breast cancer radiotherapy with proton beam scanning - an in silico study.
        Phys Med. 2017; 39: 88-94https://doi.org/10.1016/j.ejmp.2017.06.001
        • Sagel S.S.
        • Weiss E.S.
        • Gillard R.G.
        • Hounsfield G.N.
        • Jost G.T.
        • Stanley R.J.
        • et al.
        Gated computed tomography of the human heart.
        Invest Radiol. 1977; 12: 563-566
        • Hoffman E.J.
        • Phelps M.E.
        • Wisenberg G.
        • Schelbert H.R.
        • Kuhl D.E.
        Electrocardiographic gating in positron emission computed tomography.
        J Comput Assist Tomogr. 1979; 3: 733-739
        • Schwarz M.
        • Cattaneo G.M.
        • Marrazzo L.
        Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review.
        Phys Med. 2017; 36: 126-139https://doi.org/10.1016/j.ejmp.2017.02.011
        • Keall P.J.
        • Mageras G.S.
        • Balter J.M.
        • Emery R.S.
        • Forster K.M.
        • Jiang S.B.
        • et al.
        The management of respiratory motion in radiation oncology report of AAPM TG 76.
        Med Phys. 2006; 33: 3874-3900
        • Christodoulou M.
        • Bayman N.
        • McCloskey P.
        • Rowbottom C.
        • Faivre-Finn C.
        New radiotherapy approaches in locally advanced non-small cell lung cancer.
        Eur J Cancer. 2014; 50: 525-534https://doi.org/10.1016/j.ejca.2013.11.027
        • Knopf A.C.
        • Stützer K.
        • Richter C.
        • Rucinski A.
        • da Silva J.
        • Phillips J.
        • et al.
        Required transition from research to clinical application: report on the 4D treatment planning workshops 2014 and 2015.
        Physica Med. 2016; 32: 874-882https://doi.org/10.1016/j.ejmp.2016.05.064
        • Nehmeh S.A.
        • Erdi Y.E.
        • Pan T.
        • Pevsner A.
        • Rosenzweig K.E.
        • Yorke E.
        • et al.
        Four-dimensional (4D) PET/CT imaging of the thorax.
        Med Phys. 2004; 31: 3179-3186
        • Erdi Y.E.
        • Nexhmeh S.A.
        • Pan T.
        • Pevsner A.
        • Rosenzweig K.E.
        • Mageras G.
        • et al.
        The CT motion quantitation of lung lesions and its impact on PET-measured SUVs.
        J Nucl Med. 2004; 45: 1287-1292
        • Callahan J.
        • Binns D.
        • Dunn L.
        • Kron T.
        Motion effects on SUV and lesion volume in 3D and 4D PET scanning.
        Australas Phys Eng Sci Med. 2011; 34: 489-495https://doi.org/10.1007/s13246-011-0109-x
        • Peters D.C.
        • Nezafat R.
        • Eggers H.
        • Stehning C.
        • Manning W.J.
        2D free-breathing dual navigator-gated cardiac function validated against the 2D breath-hold acquisition.
        J Magn Reson Imaging. 2008; 28: 773-777https://doi.org/10.1002/jmri.21417
        • Salehi N.
        • Rahmim A.
        • Fatemizadeh E.
        • Akbarzadeh A.
        • Farahani M.H.
        • Farzanefar S.
        • et al.
        Cardiac contraction motion compensation in gated myocardial perfusion SPECT: a comparative study.
        Phys Med. 2018; 49: 77-82https://doi.org/10.1016/j.ejmp.2018.05.004
        • Chen B.
        • Hu Y.
        • Liu J.
        • Cao A.N.
        • Ye L.X.
        • Zeng Z.C.
        Respiratory motion of adrenal gland metastases: analyses using four-dimensional computed tomography images.
        Phys Med. 2017; 38: 54-58https://doi.org/10.1016/j.ejmp.2017.05.045
        • Ross J.C.
        • Tranquebar R.
        • Shanbhag D.
        Real-time liver motion compensation for MRgFUS.
        Med Image Comput Comput Assist Interv. 2008; 11: 806-813
        • Ren Q.
        • Nishioka S.
        • Shirato H.
        • Berbeco R.
        Adaptive external gating based on the updating method of internal/external correlation and gating window before each beam delivery.
        Phys Med Biol. 2012; 57: N145-N157https://doi.org/10.1088/0031-9155/57/9/N145
        • Ishihara Y.
        • Nakamura M.
        • Miyabe Y.
        • Mukumoto N.
        • Matsuo Y.
        • Sawada A.
        • et al.
        Development of a four-dimensional Monte Carlo dose calculation system for real-time tumor-trackingirradiation with a gimbaled X-ray head.
        Phys Med. 2017; 35: 59-65https://doi.org/10.1016/j.ejmp.2017.02.004
        • Garibaldi C.
        • Russo S.
        • Ciardo D.
        • Comi S.
        • Seregni M.
        • Fassi A.
        • et al.
        Geometric and dosimetric accuracy and imaging dose of the real-time tumour tracking system of a gimbal mounted linac.
        Phys Med. 2015; 31: 501-509https://doi.org/10.1016/j.ejmp.2015.04.001
        • D'Souza W.D.
        • Naqvi S.A.
        • Yu C.X.
        Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study.
        Phys Med Biol. 2005; 50: 4021-4023
        • Wilbert J.
        • Baier K.
        • Richter A.
        • Herrmann C.
        • Ma L.
        • Flentje M.
        • et al.
        Influence of continuous table motion on patient breathing patterns.
        Int J Radiat Oncol Biol Phys. 2010; 77: 622-629https://doi.org/10.1016/j.ijrobp.2009.08.033
        • Keall P.J.
        • Colvill E.
        • O'Brien R.
        • Ng J.A.
        • Poulsen P.R.
        • Eade T.
        • et al.
        The first clinical implementation of electromagnetic transponder-guided MLC tracking.
        Med Phys. 2014; 41020702https://doi.org/10.1118/1.4862509
        • Suh Y.
        • Murray W.
        • Keall P.J.
        IMRT treatment planning on 4D geometries for the era of dynamic MLC tracking.
        Technol Cancer Res Treat. 2014; 13: 505-515https://doi.org/10.7785/tcrtexpress.2013.600276
        • Poulsen P.R.
        • Fledelius W.
        • Cho B.
        • Keall P.
        Image-based dynamic multileaf collimator tracking of moving targets during intensity-modulated arc therapy.
        Int J Radiat Oncol Biol Phys. 2012; 83: e265-e271https://doi.org/10.1016/j.ijrobp.2011.12.053
        • Murakami Y.
        • Magome T.
        • Matsubayashi F.
        • Takahashi R.
        • Arima M.
        • Kamima T.
        • et al.
        Evaluation of organ-at-risk dose reduction with jaw tracking technique in flattening filter-free beams in lung stereotactic body radiation therapy.
        Phys Med. 2019; 61: 70-76https://doi.org/10.1016/j.ejmp.2019.04.018
        • Saito N.
        • Chaudhri N.
        • Gemmel A.
        • Durante M.
        • Rietzel E.
        • Bert C.
        Prediction methods for synchronization of scanned ion beam tracking.
        Phys Med. 2013 Nov; 29: 639-643https://doi.org/10.1016/j.ejmp.2012.08.003
        • Glitzner M.
        • Woodhead P.L.
        • Borman P.T.S.
        • Lagendijk J.J.W.
        Raaymakers BW. Technical note: MLC-tracking performance on the Elekta unity MRI-linac.
        Phys Med Biol. 2019; 64: 15NT02https://doi.org/10.1088/1361-6560/ab2667
        • Ernst F.
        • Dürichen R.
        • Schlaefer A.
        • Schweikard A.
        Evaluating and comparing algorithms for respiratory motion prediction.
        Phys Med Biol. 2013; 58: 3911-3929https://doi.org/10.1088/0031-9155/58/11/3911
        • Vedam S.S.
        • Keall P.J.
        • Docef A.
        • Todor D.A.
        • Kini V.R.
        • Mohan R.
        Predicting respiratory motion for four-dimensional radiotherapy.
        Med Phys. 2004; 31: 2274-2283
        • Murphy M.J.
        • Dieterich S.
        Comparative performance of linear and nonlinear neural networks to predict irregular breathing.
        Phys Med Biol. 2006; 51: 5903-5914
        • McClelland J.R.
        • Hawkes D.J.
        • Schaeffter T.
        • King A.P.
        Respiratory motion models: a review.
        Med Image Anal. 2013; 17: 19-42https://doi.org/10.1016/j.media.2012.09.005
        • Bogren H.G.
        • Lantz B.M.
        • Miller R.R.
        • Mason D.T.
        Effect of respiration on cardiac motion determined by cineangiography. Implications concerning three-dimensional heart reconstruction using computer tomography.
        Acta Radiol Diagn (Stockh). 1977; 18: 609-620
        • Lewis C.E.
        • Prato F.S.
        • Drost D.J.
        • Nicholson R.L.
        Comparison of respiratory triggering and gating techniques for the removal of respiratory artifacts in MR imaging.
        Radiology. 1986; 160: 803-810
        • Edelman R.R.
        • Atkinson D.J.
        • Silver M.S.
        • Loaiza F.L.
        • Warren W.S.
        FRODO pulse sequences: a new means of eliminating motion, flow, and wraparound artifacts.
        Radiology. 1988; 166: 231-236
        • Filipovic M.
        • Vuissoz P.A.
        • Codreanu A.
        • Claudon M.
        • Felblinger J.
        Motion compensated generalized reconstruction for free-breathing dynamic contrast-enhanced MRI.
        Magn Reson Med. 2011; 65: 812-822https://doi.org/10.1002/mrm.22644
        • Rahni A.A.A.
        • Lewis E.
        • Guy M.J.
        • Goswami B.
        • Wells K.
        A particle filter approach to respiratory motion estimation in nuclear medicine imaging.
        IEEE Trans Nucl Sci. 2011; 58: 2276-2285
        • McClelland J.R.
        • Hughes S.
        • Modat M.
        • Qureshi A.
        • Ahmad S.
        • Landau D.B.
        • et al.
        Inter-fraction variations in respiratory motion models.
        Phys Med Biol. 2011; 56: 251-272
        • Sonke J.J.
        • Lebesque J.
        • van Herk M.
        Variability of four-dimensional computed tomography patient models.
        Int J Radiat Oncol Biol Phys. 2008; 70: 590-598
        • Meschini G.
        • Seregni M.
        • Pella A.
        • Ciocca M.
        • Fossati P.
        • Valvo F.
        • et al.
        Evaluation of residual abdominal tumour motion in carbon ion gated treatments through respiratory motion modelling.
        Phys Med. 2017; 34: 28-37https://doi.org/10.1016/j.ejmp.2017.01.009
        • Danias P.G.
        • McConnell M.V.
        • Khasgiwala V.C.
        • Chuang M.L.
        • Edelman R.R.
        • Manning W.J.
        Prospective navigator correction of image position for coronary MR angiography.
        Radiology. 1997; 203: 733-736
        • Moriya S.
        • Tachibana H.
        • Kitamura N.
        • Sawant A.
        • Sato M.
        Dose warping performance in deformable image registration in lung.
        Phys Med. 2017; 37: 16-23https://doi.org/10.1016/j.ejmp.2017.03.016
        • Santelli C.
        • Nezafat R.
        • Goddu B.
        • Manning W.J.
        • Smink J.
        • Kozerke S.
        • et al.
        Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR.
        Magn Reson Med. 2011; 65: 1097-1102https://doi.org/10.1002/mrm.22687
        • Chi P.C.
        • Balter P.
        • Luo D.
        • Mohan R.
        • Pan T.
        Relation of external surface to internal tumor motion studied with cine CT.
        Med Phys. 2006; 33: 3116-3123
        • King A.P.
        • Blackall J.M.
        • Penney G.P.
        • Hawkes D.J.
        Tracking liver motion using 3-D ultrasound and a surface based statistical shape model.
        Proceedings Mathematical Methods in Biomedical Image Analysis (MMBIA). 2001; : 145-152
        • Ting L.L.
        • Chuang H.C.
        • Liao A.H.
        • Kuo C.C.
        • Yu H.W.
        • Zhou Y.L.
        • et al.
        Experimental verification of a two-dimensional respiratory motion compensation system with ultrasound tracking technique in radiation therapy.
        Phys Med. 2018; 49: 11-18https://doi.org/10.1016/j.ejmp.2018.04.393
        • Schwaab J.
        • Prall M.
        • Sarti C.
        • Kaderka R.
        • Bert C.
        • Kurz C.
        • et al.
        Ultrasound tracking for intra-fractional motion compensation in radiation therapy.
        Phys Med. 2014; 30: 578-582https://doi.org/10.1016/j.ejmp.2014.03.003
        • Vandemeulebroucke J.
        • Rit S.
        • Kybic J.
        • Clarysse P.
        • Sarrut D.
        Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs.
        Med Phys. 2011; 38: 166-178
        • Lafrenière M.
        • Mahadeo N.
        • Lewis J.
        • Rottmann J.
        • Williams C.L.
        Continuous generation of volumetric images during stereotactic body radiation therapy using periodic kV imaging and an external respiratory surrogate.
        Phys Med. 2019; 63: 25-34https://doi.org/10.1016/j.ejmp.2019.05.012
        • Henningsson M.
        • Koken P.
        • Stehning C.
        • Razavi R.
        • Prieto C.
        • Botnar R.M.
        Whole-heart coronary MR angiography with 2D self-navigated image reconstruction.
        Magn Reson Med. 2012; 67: 437-445https://doi.org/10.1002/mrm.23027
        • Lowther N.
        • Ipsen S.
        • Marsh S.
        • Blanck O.
        • Keall P.
        Investigation of the XCAT phantom as a validation tool in cardiac MRI tracking algorithms.
        Phys Med. 2018; 45: 44-51https://doi.org/10.1016/j.ejmp.2017.12.003
        • Dieterich S.
        • Cleary K.
        • D'Souza W.
        • Murphy M.
        • Wong K.H.
        • Keall P.
        Locating and targeting moving tumors with radiation beams.
        Med Phys. 2008; 35: 5684-5694
        • Kalman R.E.
        A new approach to linear filtering and prediction problems.
        Trans ASME J Basic Eng. 1960; 82: 35-45
        • Boone J.M.
        Radiological interpretation 2020: toward quantitative image assessment.
        Med Phys. 2007; 34: 4173-4179
        • Fedeli L.
        • Belli G.
        • Ciccarone A.
        • Coniglio A.
        • Esposito M.
        • Giannelli M.
        • et al.
        Dependence of apparent diffusion coefficient measurement on diffusion gradient direction and spatial position - a quality assurance intercomparison study of forty-four scanners for quantitative diffusion-weighted imaging.
        Phys Med. 2018; 55: 135-141https://doi.org/10.1016/j.ejmp.2018.09.007
        • Sommer F.G.
        • Sumanaweera T.S.
        • Glover G.
        Tissue ablation using an acoustic waveguide for high-intensity focused ultrasound.
        Med Phys. 1997 Apr; 24: 537-538
        • Zhou Y.F.
        High intensity focused ultrasound in clinical tumor ablation.
        World J Clin Oncol. 2011; 2: 8-27https://doi.org/10.5306/wjco.v2.i1.8
        • Okada A.
        • Murakami T.
        • Mikami K.
        • et al.
        A case of hepatocellular carcinoma treated by mr-guided focused ultrasound ablation with respiratory gating.
        Magn Res Med Sci. 2006; 5: 167-171
        • Ferrer C.J.
        • Bos C.
        • de Senneville B.D.
        • Borman P.
        • Stemkens B.
        • Tijssen R.
        • et al.
        A planning strategy for combined motion-assisted/gated MR guided focused ultrasound treatment of the pancreas.
        Int J Hyperthermia. 2019; 36: 702-711https://doi.org/10.1080/02656736.2019.1629650
        • Rudin S.
        • Bednarek D.R.
        • Hoffmann K.R.
        Endovascular image-guided interventions (EIGIs).
        Med Phys. 2008; 35: 301-309
        • Clement G.T.
        • Hynynen K.
        A non-invasive method for focusing ultrasound through the human skull.
        Phys Med Biol. 2002; 47: 1219-1236
        • Sung H.Y.
        • Jung S.E.
        • Cho S.H.
        • Zhou K.
        • Han J.Y.
        • Han S.T.
        • et al.
        Long-term outcome of high-intensity focused ultrasound in advanced pancreatic cancer.
        Pancreas. 2011; 40: 1080-1086https://doi.org/10.1097/MPA.0b013e31821fde24
        • Roujol S.
        • Ries M.
        • Moonen C.
        • de Senneville B.D.
        Automatic nonrigid calibration of image registration for real time MR-guided HIFU ablations of mobile organs.
        IEEE Trans Med Imaging. 2011; 30: 1737-1745https://doi.org/10.1109/TMI.2011.2144615
        • Pernot M.
        • Tanter M.
        • Fink M.
        3-D real-time motion correction in high-intensity focused ultrasound therapy.
        Ultrasound Med Biol. 2004; 30: 1239-1249
        • de Senneville B.D.
        • Mougenot C.
        • Moonen C.T.
        Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound.
        Magn Reson Med. 2007; 57: 319-330
        • Roujol S.
        • Ries M.
        • Quesson B.
        • Moonen C.
        • Denis de Senneville B.
        Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs.
        Magn Reson Med. 2010; 63: 1080-1087https://doi.org/10.1002/mrm.22309
        • Ishihara Y.
        • Calderon A.
        • Watanabe H.
        • Okamoto K.
        • Suzuki Y.
        • Kuroda K.
        • et al.
        A precise and fast temperature mapping using water proton chemical shift.
        Magn Reson Med. 1995; 34: 814-823
        • Kickhefel A.
        • Roland J.
        • Weiss C.
        • Schick F.
        Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences.
        Phys Med. 2010; 26: 192-201https://doi.org/10.1016/j.ejmp.2009.11.006
        • Zucconi F.
        • Colombo P.E.
        • Pasetto S.
        • Lascialfari A.
        • Ticca C.
        • Torresin A.
        Analysis and reduction of thermal dose errors in MRgFUS treatment.
        Phys Med. 2014; 30: 111-116https://doi.org/10.1016/j.ejmp.2013.04.003
        • Ries M.
        • De Senneville B.D.
        • Regard Y.
        • Moonen C.
        Combined magnetic resonance imaging and ultrasound ecography guidance for motion compensated HIFU interventions.
        AIP Conf Proc. 2000; 1503: 202-206
        • Chauhan S.
        • Amir H.
        • Chen G.
        • Hacker A.
        • Michel M.S.
        • Koehrmann K.U.
        Intra-operative feedback and dynamic compensation for image-guided robotic focal ultrasound surgery.
        Comput Aided Surg. 2008; 13: 353-368https://doi.org/10.3109/10929080802586825
        • Abhilash R.H.
        • Chauhan S.
        Empirical modeling of renal motion for improved targeting during focused ultrasound surgery.
        Comput Biol Med. 2013; 43: 240-247https://doi.org/10.1016/j.compbiomed.2012.11.006
        • Weidensteiner C.
        • Quesson B.
        • Caire-Gana B.
        • Kerioui N.
        • Rullier A.
        • Trillaud H.
        • et al.
        Real-time MR temperature mapping of rabbit liver in vivo during thermal ablation.
        Magn Reson Med. 2003; 50: 322-330
        • Rieke V.
        • Butts Pauly K.
        MR thermometry.
        J Magn Reson Imaging. 2008; 27: 376-390https://doi.org/10.1002/jmri.21265
        • Brost A.
        • Liao R.
        • Strobel N.
        • Hornegger J.
        Respiratory motion compensation by model-based catheter tracking during EP procedures.
        Med Image Anal. 2010; 14: 695-706https://doi.org/10.1016/j.media.2010.05.006
        • Murase K.
        • Takata H.
        • Takeuchi Y.
        • Saito S.
        Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field.
        Phys Med. 2013; 29: 624-630https://doi.org/10.1016/j.ejmp.2012.08.005
        • Woods S.P.
        • Constandinou T.G.
        Towards a micropositioning system for targeted drug delivery in wireless capsule endoscopy.
        Conf Proc IEEE Eng Med Biol Soc. 2011; 2011: 7372-7375
        • Elbialy N.S.
        • Fathy M.M.
        • Khalil W.M.
        Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers.
        Phys Med. 2014; 30: 843-848https://doi.org/10.1016/j.ejmp.2014.05.012
        • Santos M.A.
        • Goertz D.E.
        • Hynynen K.
        Focused Ultrasound Hyperthermia Mediated Drug Delivery Using Thermosensitive Liposomes and Visualized With in vivo Two-Photon Microscopy.
        Theranostics. 2017; 7: 2718-2731https://doi.org/10.7150/thno.19662
        • Vogl T.J.
        • Naguib N.N.N.
        • Lehnert T.
        • Nour-Eldin N.A.
        Radiofrequency, microwave and laser ablation of pulmonary neoplasms: Clinical studies and technical considerations—review article.
        Eur J Radiol. 2017; 77: 346-357
        • Yuan Z.
        • Wang Y.
        • Zhang J.
        • Zheng J.
        • Li W.
        A Meta-Analysis of Clinical Outcomes After Radiofrequency Ablation and Microwave Ablation for Lung Cancer and Pulmonary Metastases.
        J Am Coll Radiol. 2019; 16: 302-314https://doi.org/10.1016/j.jacr.2018.10.012
        • Vogl T.J.
        • Eckert R.
        • Naguib N.N.
        • Beeres M.
        • Gruber-Rouh T.
        • Nour-Eldin N.A.
        Thermal Ablation of Colorectal Lung Metastases: Retrospective Comparison Among Laser-Induced Thermotherapy, Radiofrequency Ablation, and Microwave Ablation.
        AJR Am J Roentgenol. 2016; 207: 1340-1349
        • Mentha G.
        • Terraz S.
        • Andres A.
        • Toso C.
        • Rubbia-Brandt L.
        • Majno P.
        Operative management of colorectal liver metastases.
        Semin Liver Dis. 2013; 33: 262-272https://doi.org/10.1055/s-0033-1351785
        • Ross J.C.
        • Subramanian N.
        • Solomon S.B.
        Motion correction for augmented fluoroscopy – application to liver embolization.
        in: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging. 2008: 1553-1556
        • Struelens L.
        • Bacher K.
        • Bosmans H.
        • Bleeser F.
        • Hoornaert M.T.
        • Malchair F.
        • et al.
        Establishment of trigger levels to steer the follow-up of radiation effects in patients undergoing fluoroscopically-guided interventional procedures in Belgium.
        Phys Med. 2014; 30: 934-940https://doi.org/10.1016/j.ejmp.2014.09.006
        • Kumar A.
        • Zhang X.
        • Liang X.J.
        Gold nanoparticles: emerging paradigm for targeted drug delivery system.
        Biotechnol Adv. 2013; 31: 593-606https://doi.org/10.1016/j.biotechadv.2012.10.002
        • Resnier P.
        • Montier T.
        • Mathieu V.
        • Benoit J.P.
        • Passirani C.
        A review of the current status of siRNA nanomedicines in the treatment of cancer.
        Biomaterials. 2013; 34: 6429-6443https://doi.org/10.1016/j.biomaterials.2013.04.060
        • Peukert D.
        • Kempson I.
        • Douglass M.
        • Bezak E.
        Metallic nanoparticle radiosensitisation of ion radiotherapy: a review.
        Phys Med. 2018; 47: 121-128https://doi.org/10.1016/j.ejmp.2018.03.004
        • Kettenbach J.
        • Kronreif G.
        Robotic systems for percutaneous needle-guided interventions.
        Minim Invasive Ther Allied Technol. 2015 Feb; 24: 45-53https://doi.org/10.3109/13645706.2014.977299
        • Leal Ghezzi T.
        • Campos Corleta O.
        30 Years of Robotic Surgery.
        World J Surg. 2016; 40: 2550-2557https://doi.org/10.1007/s00268-016-3543-9
        • Clifford M.A.
        • Banovac F.
        • Levy E.
        • Cleary K.
        Assessment of hepatic motion secondary to respiration for computer assisted interventions.
        Comput Aided Surg. 2002; 7: 291-299
        • Harris E.J.
        • Miller N.R.
        • Bamber J.C.
        • Symonds-Tayler J.R.
        • Evans P.M.
        Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound.
        Phys Med Biol. 2010; 55: 3363-3380https://doi.org/10.1088/0031-9155/55/12/007
        • Larue R.T.
        • Defraene G.
        • De Ruysscher D.
        • Lambin P.
        • van Elmpt W.
        Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.
        Br J Radiol. 2017; 90: 20160665https://doi.org/10.1259/bjr.20160665
        • Viry A.
        • Aberle C.
        • Racine D.
        • Knebel J.F.
        • Schindera S.T.
        • Schmidt S.
        • et al.
        Effects of various generations of iterative CT reconstruction algorithms on low-contrast detectability as a function of the effective abdominal diameter: A quantitative task-based phantom study.
        Phys Med. 2018; 48: 111-118https://doi.org/10.1016/j.ejmp.2018.04.006
        • Sakabe D.
        • Funama Y.
        • Taguchi K.
        • Nakaura T.
        • Utsunomiya D.
        • Oda S.
        • et al.
        Image quality characteristics for virtual monoenergetic images using dual-layer spectral detector CT: comparison with conventional tube-voltage images.
        Phys Med. 2018; 49: 5-10https://doi.org/10.1016/j.ejmp.2018.04.388
        • Wink N.
        • Panknin C.
        • Solberg T.D.
        Phase versus amplitude sorting of 4D-CT data.
        J Appl Clin Med Phys. 2006; 7: 77-85
        • Lee S.M.
        • Lee H.J.
        • Kim J.I.
        • Kang M.J.
        • Goo J.M.
        • Park C.M.
        • et al.
        Adaptive 4D volume perfusion CT of lung cancer: effects of computerized motion correction and the range of volume coverage on measurement reproducibility.
        AJR Am J Roentgenol. 2013; 200: W603-W609https://doi.org/10.2214/AJR.12.9458
        • Chandler A.
        • Wei W.
        • Herron D.H.
        • Anderson E.F.
        • Johnson V.E.
        • Ng C.S.
        Semiautomated motion correction of tumors in lung CT-perfusion studies.
        Acad Radiol. 2011; 18: 286-293https://doi.org/10.1016/j.acra.2010.10.008
        • Beyer T.
        • Townsend D.W.
        • Brun T.
        • Kinahan P.E.
        • Charron M.
        • Roddy R.
        • et al.
        A combined PET/CT scanner for clinical oncology.
        J Nucl Med. 2000; 41: 1369-1379
        • Belli M.L.
        • Mori M.
        • Broggi S.
        • Cattaneo G.M.
        • Bettinardi V.
        • Dell'Oca I.
        • et al.
        Quantifying the robustness of [18F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients.
        Phys Med. 2018; 49: 105-111https://doi.org/10.1016/j.ejmp.2018.05.013
        • Buizza G.
        • Toma-Dasu I.
        • Lazzeroni M.
        • Paganelli C.
        • Riboldi M.
        • Chang Y.
        • et al.
        Early tumor response prediction for lung cancer patients using novel longitudinal pattern features from sequential PET/CT image scans.
        Phys Med. 2018; 54: 21-29https://doi.org/10.1016/j.ejmp.2018.09.003
        • Rosenman J.
        Incorporating functional imaging information into radiation treatment.
        Semin Radiat Oncol. 2001; 11: 83-92
        • Erdi Y.E.
        • Rosenzweig K.
        • Erdi A.K.
        • Macapinlac H.A.
        • Hu Y.C.
        • Braban L.E.
        • et al.
        Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET).
        Radiother Oncol. 2002; 62: 51-60
        • Dawson L.A.
        • Sharpe M.B.
        Image-guided radiotherapy: rationale, benefits, and limitations.
        Lancet Oncol. 2006; 7: 848-858
        • Chang G.
        • Chang T.
        • Clark Jr, J.W.
        • Mawlawi O.R.
        Design and performance of a respiratory amplitude gating device for PET/CT imaging.
        Med Phys. 2010; 37: 1408-1412
        • Didierlaurent D.
        • Ribes S.
        • Caselles O.
        • Jaudet C.
        • Cazalet J.M.
        • Batatia H.
        • et al.
        A new respiratory gating device to improve 4D PET/CT.
        Med Phys. 2013; 40032501https://doi.org/10.1118/1.4789487
        • Jin X.
        • Chan C.
        • Mulnix T.
        • Panin V.
        • Casey M.E.
        • Liu C.
        • et al.
        List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction.
        Phys Med Biol. 2013; 58: 5567-5591https://doi.org/10.1088/0031-9155/58/16/5567
        • Wallach D.
        • Lamare F.
        • Kontaxakis G.
        • Visvikis D.
        Super-resolution in respiratory synchronized positron emission tomography.
        IEEE Trans Med Imaging. 2012; 31: 438-448
        • Ralli G.P.
        • Chappell M.A.
        • McGowan D.R.
        • Sharma R.A.
        • Higgins G.S.
        • Fenwick J.D.
        4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties.
        Phys Med Biol. 2018; 63095013https://doi.org/10.1088/1361-6560/aabb62
        • Liu C.
        • Alessio A.M.
        • Kinahan P.E.
        Respiratory motion correction for quantitative PET/CT using all detected events with internal-external motion correlation.
        Med Phys. 2011; 38: 2715-2723
        • Meier J.G.
        • Einstein S.A.
        • Diab R.H.
        • Erasmus L.J.
        • Xu G.
        • Mawlawi O.R.
        Impact of free-breathing CT on quantitative measurements of static and quiescent period-gated PET Images.
        Phys Med Biol. 2019; 64105013https://doi.org/10.1088/1361-6560/ab1cdd
        • Merlin T.
        • Visvikis D.
        • Fernandez P.
        • Lamare F.
        Dynamic PET image reconstruction integrating temporal regularization associated with respiratory motion correction for applications in oncology.
        Phys Med Biol. 2018; 63045012https://doi.org/10.1088/1361-6560/aaa86a
        • Cavedon C.
        • Giri M.G.
        • Zivelonghi E.
        • Grigolato D.
        • Zuffante M.
        • Ferdeghini M.
        4D-PET for Target Volume Delineation in Respiratory-Gated Radiation.
        Therapy. Med Phys. 2012; 39: 3691https://doi.org/10.1118/1.4735007
        • Gianoli C.
        • Riboldi M.
        • Fontana G.
        • Giri M.G.
        • Grigolato D.
        • Ferdeghini M.
        • et al.
        Optimized PET imaging for 4D treatment planning in radiotherapy: the virtual 4D PET strategy.
        Technol Cancer Res Treat. 2015; 14: 99-110https://doi.org/10.7785/tcrt.2012.500393
        • Bai W.
        • Brady M.
        Regularized B-spline deformable registration for respiratory motion correction in PET images.
        Phys Med Biol. 2009; 54: 2719-2736https://doi.org/10.1088/0031-9155/54/9/008
        • Gianoli C.
        • Riboldi M.
        • Spadea M.F.
        • Travaini L.L.
        • Ferrari M.
        • Mei R.
        • et al.
        A multiple points method for 4D CT image sorting.
        Med Phys. 2011 Feb; 38: 656-667
        • Didierlaurent D.
        • Jaudet C.
        • Ribes S.
        • Batatia H.
        • Dierickx L.O.
        • Zerdoud S.
        • et al.
        Comparison of an alternative and existing binning methods to reduce the acquisition duration of 4D PET/CT.
        Med Phys. 2014; 41112503https://doi.org/10.1118/1.4897612
        • Torigian D.A.
        • Zaidi H.
        • Kwee T.C.
        • Saboury B.
        • Udupa J.K.
        • Cho Z.H.
        • et al.
        PET/MR imaging: technical aspects and potential clinical applications.
        Radiology. 2013; 267: 26-44https://doi.org/10.1148/radiol.13121038
        • Würslin C.
        • Schmidt H.
        • Martirosian P.
        • Brendle C.
        • Boss A.
        • Schwenzer N.F.
        • et al.
        Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system.
        J Nucl Med. 2013; 54: 464-471https://doi.org/10.2967/jnumed.112.105296
        • Slomka P.J.
        • Pan T.
        • Germano G.
        Recent Advances and Future Progress in PET Instrumentation.
        Semin Nucl Med. 2016; 46 (pp. 5–19 (review))https://doi.org/10.1053/j.semnuclmed.2015.09.006
        • Kolbitsch C.
        • Neji R.
        • Fenchel M.
        • Schuh A.
        • Mallia A.
        • Marsden P.
        • et al.
        Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR.
        Phys Med Biol. 2018; 64015007https://doi.org/10.1088/1361-6560/aaf246
        • Teo B.K.
        • Saboury B.
        • Munbodh R.
        • Scheuermann J.
        • Torigian D.A.
        • Zaidi H.
        • et al.
        The effect of breathing irregularities on quantitative accuracy of respiratory gated PET∕CT.
        Med Phys. 2012; 39: 7390-7397https://doi.org/10.1118/1.4766876
        • Crivellaro C.
        • De Ponti E.
        • Elisei F.
        • Morzenti S.
        • Picchio M.
        • Bettinardi V.
        • et al.
        Added diagnostic value of respiratory-gated 4D 18F-FDG PET/CT in the detection of liver lesions: a multicenter study.
        Eur J Nucl Med Mol Imaging. 2018; 45: 102-109https://doi.org/10.1007/s00259-017-3795-0
        • Fayad H.
        • Lamare F.
        • Merlin T.
        • Visvikis D.
        Motion correction using anatomical information in PET/CT and PET/MR hybrid imaging.
        Q J Nucl Med Mol Imaging. 2016; 60: 12-24
        • Lei L.
        • Wang X.
        • Chen Z.
        PET/CT Imaging for Monitoring Recurrence and Evaluating Response to Treatment in Breast Cancer.
        Adv Clin Exp Med. 2016; 25: 377-382https://doi.org/10.17219/acem/29853
        • Vuong D.
        • Tanadini-Lang S.
        • Huellner M.W.
        • Veit-Haibach P.
        • Unkelbach J.
        • Andratschke N.
        • et al.
        Interchangeability of radiomic features between [18F]-FDG PET/CT and [18F]-FDG PET/MR.
        Med Phys. 2019; 46: 1677-1685https://doi.org/10.1002/mp.13422
        • Benz D.C.
        • Buechel R.R.
        How to stop breathing: On the matter of getting respiratory motion under control.
        J Nucl Cardiol. 2017; 24: 1608-1609https://doi.org/10.1007/s12350-016-0542-z
        • Yang Y.X.
        • Teo S.K.
        • Van Reeth E.
        • Tan C.H.
        • Tham I.W.
        • Poh C.L.
        A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.
        Med Phys. 2015; 42: 4484-4496https://doi.org/10.1118/1.4923167
        • Ishida M.
        • Schuster A.
        • Takase S.
        • Morton G.
        • Chiribiri A.
        • Bigalke B.
        • et al.
        Impact of an abdominal belt on breathing patterns and scan efficiency in whole-heart coronary magnetic resonance angiography: comparison between the UK and Japan.
        J Cardiovasc Magn Reson. 2011; 13: 71https://doi.org/10.1186/1532-429X-13-71
        • Meschini G.
        • Paganelli C.
        • Gianoli C.
        • Summers P.
        • Bellomi M.
        • Baroni G.
        • et al.
        A clustering approach to 4D MRI retrospective sorting for the investigation of different surrogates.
        Phys Med. 2019; 58: 107-113https://doi.org/10.1016/j.ejmp.2019.02.003
        • Lin W.
        • Nielsen T.
        • Qin Q.
        • Mostofsky S.H.
        • Wei J.
        • Huang F.
        • et al.
        Real-time motion correction in two-dimensional multislice imaging with through-plane navigator.
        Magn Reson Med. 2014; 71: 1995-2005https://doi.org/10.1002/mrm.24852
        • Lin W.
        • Huang F.
        • Duensing G.R.
        • Reykowski A.
        High temporal resolution retrospective motion correction with radial parallel imaging.
        Magn. Reson. Med. 2012; 67: 1097-1105https://doi.org/10.1002/mrm.23092
        • Vaillant G.
        • Prieto C.
        • Kolbitsch C.
        • Penney G.
        • Schaeffter T.
        Retrospective Rigid Motion Correction in k-Space for Segmented Radial MRI.
        IEEE Trans Med Imaging. 2014; 33: 1-10https://doi.org/10.1109/TMI.2013.2268898
        • Chilla G.S.V.N.
        • Tan C.H.
        • Poh C.L.
        Deformable Registration-Based Super-resolution for Isotropic Reconstruction of 4-D MRI Volumes.
        IEEE J Biomed Health Inform. 2017; 21: 1617-1624https://doi.org/10.1109/JBHI.2017.2681688
        • Henzler T.
        • Schmid-Bindert G.
        • Schoenberg S.O.
        • Fink C.
        Diffusion and perfusion MRI of the lung and mediastinum.
        Eur J Radiol. 2010; 76: 329-336https://doi.org/10.1016/j.ejrad.2010.05.005
        • Ding Y.
        • Mason R.P.
        • McColl R.W.
        • Yuan Q.
        • Hallac R.R.
        • Sims R.D.
        • et al.
        Simultaneous measurement of tissue oxygen level-dependent (TOLD) and blood oxygenation level-dependent (BOLD) effects in abdominal tissue oxygenation level studies.
        J Magn Reson Imaging. 2013; 38: 1230-1236https://doi.org/10.1002/jmri.24006
        • Jhaveri K.S.
        • Cleary S.P.
        • Fischer S.
        • Haider M.A.
        • Pargoankar V.
        • Khalidi K.
        • et al.
        Blood oxygen level-dependent liver MRI: can it predict microvascular invasion in HCC?.
        J Magn Reson Imaging. 2013; 37: 692-699https://doi.org/10.1002/jmri.23858
        • Cavedon C.
        • Meliadò G.
        • Rossi L.
        • Camera L.
        • Baglio I.
        • Caumo F.
        • et al.
        High-field MR spectroscopy in the multiparametric MRI evaluation of breast lesions.
        Phys Med. 2016; 32: 1707-1711https://doi.org/10.1016/j.ejmp.2016.09.008
        • Maximov I.I.
        • Tonoyan A.S.
        • Pronin I.N.
        Differentiation of glioma malignancy grade using diffusion MRI.
        Phys Med. 2017; 40: 24-32https://doi.org/10.1016/j.ejmp.2017.07.002
        • O'Flynn E.A.
        • Collins D.
        • D'Arcy J.
        • Schmidt M.
        • de Souza N.M.
        Multi-parametric MRI in the early prediction of response to neo-adjuvant chemotherapy in breast cancer: value of non-modelled parameters.
        Eur J Radiol. 2016; 85: 837-842https://doi.org/10.1016/j.ejrad.2016.02.006
        • Sharma U.
        • Agarwal K.
        • Hari S.
        • Mathur S.R.
        • Seenu V.
        • Parshad R.
        • et al.
        Role of diffusion weighted imaging and magnetic resonance spectroscopy in breast cancer patients with indeterminate dynamic contrast enhanced magnetic resonance imaging findings.
        Magn Reson Imaging. 2019; 61: 66-72https://doi.org/10.1016/j.mri.2019.05.032
        • Sharma U.
        • Agarwal K.
        • Sah R.G.
        • Parshad R.
        • Seenu V.
        • Mathur S.
        • et al.
        Can Multi-Parametric MR Based Approach Improve the Predictive Value of Pathological and Clinical Therapeutic Response in Breast Cancer Patients?.
        Front Oncol. 2018; 8: 319https://doi.org/10.3389/fonc.2018.00319
        • Janssen N.N.Y.
        • Ter Beek L.C.
        • Loo C.E.
        • Winter-Warnars G.
        • Lange C.A.H.
        • van Loveren M.
        • et al.
        Supine Breast MRI Using Respiratory Triggering.
        Acad Radiol. 2017; 24: 818-825https://doi.org/10.1016/j.acra.2017.01.003
        • Vreemann S.
        • Rodriguez-Ruiz A.
        • Nickel D.
        • Heacock L.
        • Appelman L.
        • van Zelst J.
        • et al.
        Compressed Sensing for Breast MRI: Resolving the Trade-Off Between Spatial and Temporal Resolution.
        Invest Radiol. 2017; 52: 574-582https://doi.org/10.1097/RLI.0000000000000384
        • Tolouee A.
        • Alirezaie J.
        • Babyn P.
        Motion-compensated data decomposition algorithm to accelerate dynamic cardiac MRI.
        MAGMA. 2018; 31: 33-47https://doi.org/10.1007/s10334-017-0628-x
        • Fuetterer M.
        • Stoeck C.T.
        • Kozerke S.
        Second-order motion compensated PRESS for cardiac spectroscopy.
        Magn Reson Med. 2017; 77: 57-64https://doi.org/10.1002/mrm.26099
        • Baka N.
        • Metz C.T.
        • Schultz C.
        • Neefjes L.
        • van Geuns R.J.
        • Lelieveldt B.P.
        • et al.
        Statistical coronary motion models for 2D+t/3D registration of X-ray coronary angiography and CTA.
        Med Image Anal. 2013; 17: 698-709https://doi.org/10.1016/j.media.2013.03.003
        • Foley D.
        • Browne J.E.
        • Zhuang X.
        • Sheane B.
        • O'Driscoll D.
        • Cannon D.
        • et al.
        The utility of deformable image registration for small artery visualisation in contrast-enhanced whole body MR angiography.
        Phys Med. 2014; 30: 898-908https://doi.org/10.1016/j.ejmp.2014.08.001
        • Dioguardi Burgio M.
        • Benseghir T.
        • Roche V.
        • Garcia Alba C.
        • Debry J.B.
        • Sibert A.
        • et al.
        Clinical impact of a new cone beam CT angiography respiratory motion artifact reduction algorithm during hepatic intra-arterial interventions.
        Eur Radiol. 2019; https://doi.org/10.1007/s00330-019-06355-w
        • Boydev C.
        • Demol B.
        • Pasquier D.
        • Saint-Jalmes H.
        • Delpon G.
        • Reynaert N.
        Zero echo time MRI-only treatment planning for radiation therapy of brain tumors after resection.
        Phys Med. 2017; 42: 332-338https://doi.org/10.1016/j.ejmp.2017.04.028
        • Mickevicius N.J.
        • Paulson E.S.
        Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy.
        Phys Med Biol. 2017; 62: 2910-2921https://doi.org/10.1088/1361-6560/aa54f2
        • Stemkens B.
        • Paulson E.S.
        • Tijssen R.H.N.
        Nuts and bolts of 4D-MRI for radiotherapy.
        Phys Med Biol. 2018; 63: 21TR01https://doi.org/10.1088/1361-6560/aae56d
        • Zhang Z.
        • Yu S.
        • Liang X.
        • Zhu Y.
        • Xie Y.
        A novel design of ultrafast micro-CT system based on carbon nanotube: a feasibility study in phantom.
        Phys Med. 2016; 32: 1302-1307https://doi.org/10.1016/j.ejmp.2016.06.016
        • Buehler M.
        • Slagowski J.M.
        • Mistretta C.A.
        • Strother C.M.
        • Speidel M.A.
        4D DSA reconstruction using tomosynthesis projections.
        Proc SPIE Int Soc Opt Eng. 2017; 10132 (pii: 101322C)https://doi.org/10.1117/12.2255197
        • Speidel M.A.
        • Tomkowiak M.T.
        • Raval A.N.
        • Dunkerley D.A.
        • Slagowski J.M.
        • Detector Kahn P
        • et al.
        collimator and real-time reconstructor for a new scanning-beam digital x-ray (SBDX) prototype.
        Proc SPIE Int Soc Opt Eng. 2015; 9412 (pii: 94121W)
        • Qiu W.
        • Li D.
        • Jin X.
        • Liu F.
        • Nguyen T.D.
        • Prince M.R.
        • et al.
        Sliding motion compensated low-rank plus sparse (SMC-LS) reconstruction for high spatiotemporal free-breathing liver 4D DCE-MRI.
        Magn Reson Imaging. 2019; 58: 56-66https://doi.org/10.1016/j.mri.2019.01.012
        • Kim D.S.
        • Lee S.
        • Kim T.H.
        • Kang S.H.
        • Kim K.H.
        • Shin D.S.
        • et al.
        A respiratory-guided 4D digital tomosynthesis.
        Phys Med Biol. 2018; 63245007https://doi.org/10.1088/1361-6560/aaeddb
        • Bock J.
        • Töger J.
        • Bidhult S.
        • Markenroth Bloch K.
        • Arvidsson P.
        • Kanski M.
        • et al.
        Validation and reproducibility of cardiovascular 4D-flow MRI from two vendors using 2 × 2 parallel imaging acceleration in pulsatile flow phantom and in vivo with and without respiratory gating.
        Acta Radiol. 2019; 60: 327-337https://doi.org/10.1177/0284185118784981
        • Dunn L.
        • Kenny J.
        A software platform for statistical evaluation of patient respiratory patterns in radiation therapy.
        Phys Med. 2017; 42: 135-140https://doi.org/10.1016/j.ejmp.2017.09.128
        • Valenti M.
        • Campanelli A.
        • Parisotto M.
        • Maggi S.
        Cine 4DCT imaging artifacts: quantification and correlations with scanning parameters and target kinetics.
        Phys Med. 2018; 52: 133-142https://doi.org/10.1016/j.ejmp.2018.07.006
        • Martin R.
        • Pan T.
        Target volume and artifact evaluation of a new data-driven 4D CT.
        Pract Radiat Oncol. 2017; 7: e345-e354https://doi.org/10.1016/j.prro.2017.01.014
        • Jong W.L.
        • Ung N.M.
        • Vannyat A.
        • Rosenfeld A.B.
        • Wong J.H.D.
        Dosimetric evaluation near lung and soft tissue interface region during respiratory-gated and non-gated radiotherapy: a moving phantom study.
        Phys Med. 2017; 42: 39-46https://doi.org/10.1016/j.ejmp.2017.08.011
        • Pallotta S.
        • Calusi S.
        • Foggi L.
        • Lisci R.
        • Masi L.
        • Marrazzo L.
        • et al.
        ADAM: A breathing phantom for lung SBRT quality assurance.
        Phys Med. 2018; 49: 147-155https://doi.org/10.1016/j.ejmp.2017.07.004
        • Kurosawa T.
        • Tachibana H.
        • Moriya S.
        • Miyakawa S.
        • Sato M.
        Usefulness of a new online patient-specific quality assurance system for respiratory-gated radiotherapy.
        Phys Med. 2017; 43: 63-72https://doi.org/10.1016/j.ejmp.2017.10.011
        • Kamomae T.
        • Shimizu H.
        • Nakaya T.
        • Okudaira K.
        • Aoyama T.
        • Oguchi H.
        • et al.
        Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance.
        Phys Med. 2017; 44: 205-211https://doi.org/10.1016/j.ejmp.2017.10.005
        • Liu Y.
        • Zhong X.
        • Czito B.G.
        • Palta M.
        • Bashir M.R.
        • Dale B.M.
        • et al.
        Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study.
        Med Phys. 2017; 44: 397-406https://doi.org/10.1002/mp.12037
        • Solbiati M.
        • Passera K.M.
        • Rotilio A.
        • Oliva F.
        • Marre I.
        • Goldberg S.N.
        • et al.
        Augmented reality for interventional oncology: proof-of-concept study of a novel high-end guidance system platform.
        Eur Radiol Exp. 2018; 2: 18https://doi.org/10.1186/s41747-018-0054-5
        • Smith L.N.
        • Farooq A.R.
        • Smith M.L.
        • Ivanov I.E.
        • Orlando A.
        Realistic and interactive high-resolution 4D environments for real-time surgeon and patient interaction.
        Int J Med Robot. 2017; 13https://doi.org/10.1002/rcs.1761
        • Fischer P.
        • Pohl T.
        • Faranesh A.
        • Maier A.
        • Hornegger J.
        Unsupervised Learning for Robust Respiratory Signal Estimation From X-Ray Fluoroscopy.
        IEEE Trans Med Imaging. 2017; 36: 865-877https://doi.org/10.1109/TMI.2016.2609888
        • Balasubramanian A.
        • Shamsuddin R.
        • Prabhakaran B.
        • Sawant A.
        Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts.
        Phys Med Biol. 2017; 62: 1791-1809https://doi.org/10.1088/1361-6560/aa58c3
        • Retson T.A.
        • Besser A.H.
        • Sall S.
        • Golden D.
        • Hsiao A.
        Machine Learning and Deep Neural Networks in Thoracic and Cardiovascular Imaging.
        J Thorac Imaging. 2019; 34: 192-201https://doi.org/10.1097/RTI.0000000000000385
        • Hirai R.
        • Sakata Y.
        • Tanizawa A.
        • Mori S.
        Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis.
        Phys Med. 2019; 59: 22-29https://doi.org/10.1016/j.ejmp.2019.02.006