Highlights
- •A deep learning-based approach is proposed for left ventricle segmentation.
- •U-net architecture is modified and combined with feature pyramid network.
- •Feature maps in all levels of the decoder path of U-net are concatenated and resized.
- •Semantic segmentation is performed on this stack of feature maps.
- •The performance of the model is evaluated using a publicly and a prepared dataset.
Abstract
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- Braunwald’s heart disease: a textbook of cardiovascular medicine.Saunders, 2018
- Recommendations for chamber quantification.Eur J Echocardiogr. 2006; 7: 79-108https://doi.org/10.1016/j.euje.2005.12.014
- Ultrasound image segmentation: a survey.IEEE Trans Med Imaging. 2006; 25: 987-1010https://doi.org/10.1109/TMI.2006.877092
- The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods.IEEE Trans IMAGE Process. 2012; 21https://doi.org/10.1109/TIP.2011.2169273
- A novel method for left ventricle volume measurement on short axis MRI images based on deformable superellipses.in: Int Joint Conf Adv Signal Process Inf Technol. Springer, 2012: 101-106
- Automatic segmentation of echocardiographic sequences by active appearance motion models.IEEE Trans Med Imaging. 2002; 21: 1374-1383https://doi.org/10.1109/TMI.2002.806427
- 3-D active appearance models: segmentation of cardiac MR and ultrasound images.IEEE Trans Med Imaging. 2002; 21: 1167-1178https://doi.org/10.1109/TMI.2002.804425
- Combinative multi-scale level set framework for echocardiographic image segmentation.Med Image Anal. 2003; 7: 529-537https://doi.org/10.1016/S1361-8415(03)00035-5
- ROPES: a semiautomated segmentation method for accelerated analysis of three-dimensional echocardiographic data.IEEE Trans Med Imaging. 2002; 21: 1091-1104https://doi.org/10.1109/TMI.2002.804432
- Probabilistic framework for tracking in artifact-prone 3D echocardiograms.Med Image Anal. 2010; 14: 750-758https://doi.org/10.1016/j.media.2010.06.003
- A hybrid graph-based approach for right ventricle segmentation in cardiac MRI by long axis information transition.Phys Medica. 2018; 54https://doi.org/10.1016/j.ejmp.2018.09.011
- Left ventricle segmentation using a combination of region growing and graph based method.Iran J Radiol. 2017; 14https://doi.org/10.5812/iranjradiol.42272
- Applying improved fast marching method to endocardial boundary detection in echocardiographic images.Pattern Recogn Lett. 2003; 24: 2777-2784https://doi.org/10.1016/S0167-8655(03)00121-1
- Using prior shapes in geometric active contours in a variational framework.Int J Comput Vis. 2002; 50: 315-328https://doi.org/10.1023/A:1020878408985
Georgescu B, Zhou XS, Comaniciu D, Gupta A. Database-Guided Segmentation of Anatomical Structures with Complex Appearance. 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2, IEEE; n.d., p. 429–36. doi: 10.1109/CVPR.2005.119.
- ImageNet classification with deep convolutional neural networks.in: Adv. Neural Inf. Process. Syst. 25. Curran Associates, Inc., 2012: 1097-1105
- Deep learning.Nature. 2015; 521: 436-444https://doi.org/10.1038/nature14539
- Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC).Eur Radiol. 2019; : 1-13https://doi.org/10.1007/s00330-019-06229-1
- 2D left ventricle segmentation using deep learning.in: 2017 IEEE Int. Ultrason. Symp. IEEE, 2017: 1-4https://doi.org/10.1109/ULTSYM.2017.8092573
- U-Net: convolutional networks for biomedical image segmentation.in: Int. Conf. Med. image Comput. Comput. Interv. Springer, 2015: 234-241https://doi.org/10.1007/978-3-319-24574-4_28
- Measures of the amount of ecologic association between species.Ecology. 1945; 26: 297-302https://doi.org/10.2307/1932409
- Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI.in: Med. Image Comput. Comput. Interv. – MICCAI 2008. Springer, Berlin, Heidelberg2008: 409-416https://doi.org/10.1007/978-3-540-85988-8_49
- Identification of the left ventricle endocardial border on two-dimensional ultrasound images using the convolutional neural network Unet.in: 2018 Ural Symp. Biomed. Eng. Radioelectron. Inf. Technol. IEEE, 2018: 76-78https://doi.org/10.1109/USBEREIT.2018.8384554
- Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation.IEEE Trans Med Imaging. 2018; 37: 384-395https://doi.org/10.1109/TMI.2017.2743464
- 3D U-Net: learning dense volumetric segmentation from sparse annotation.in: Int. Conf. Med. Image Comput. Comput. Interv. Springer, 2016: 424-432https://doi.org/10.1007/978-3-319-46723-8_49
- Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography.IEEE Trans Med Imaging. 2016; 35: 967-977https://doi.org/10.1109/TMI.2015.2503890
- Combining fully convolutional and recurrent neural networks for 3d biomedical image segmentation.Adv. Neural Inf. Process. Syst. 2016; : 3036-3044
- Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation.in: IEEE 13th Int. Symp. Biomed. Imaging. IEEE, 2016: 1414-1417https://doi.org/10.1109/ISBI.2016.7493532
- Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation.in: Reconstr. Segmentation Anal. Med. Images. Springer, 2017: 83-94https://doi.org/10.1007/978-3-319-52280-7_8
Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation. IEEE Conf. Comput. Vis. pattern Recognit, 2015, p. 3431–40.
- Feature pyramid networks for object detection.CVPR. 2017; : 2117-2125
- Deep learning for segmentation using an open large-scale dataset in 2D echocardiography.IEEE Trans Med Imaging. 2019; : 1https://doi.org/10.1109/TMI.2019.2900516
- Springer, Cham2018: 3-11https://doi.org/10.1007/978-3-030-00889-5_1 UNet++: a nested U-net architecture for medical image segmentation.
- Stacked hourglass networks for human pose estimation.in: Eur. Conf. Comput. Vis. Springer, Cham2016: 483-499https://doi.org/10.1007/978-3-319-46484-8_29
Yu F, Koltun V. multi-scale context aggregation by dilated convolutions. ArXiv Prepr ArXiv151107122 2016.
Chen L-C, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. ArXiv Prepr ArXiv170605587 2017.
- Pyramid methods in image processing.RCA Eng. 1984; 29: 33-41
- Laplacian pyramid reconstruction and refinement for semantic segmentation.in: Eur. Conf. Comput. Vis. Springer, Cham2016: 519-534https://doi.org/10.1007/978-3-319-46487-9_32
Honari S, Yosinski J, Vincent P, Pal C. Recombinator Networks: Learning Coarse-To-Fine Feature Aggregation. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, p. 5743–52.
- Learning to refine object segments.in: Eur. Conf. Comput. Vis. Springer, Cham2016: 75-91https://doi.org/10.1007/978-3-319-46448-0_5
- Local contrast and mean based thresholding technique in image binarization.Int J Comput Appl. 2012; 51: 6-10https://doi.org/10.5120/8044-1362
- An introduction to digital image processing.Prentice-Hall Englewood Cliffs, 1986
- Springer New York, New York, NY2014: 277-289https://doi.org/10.1007/978-1-4614-7657-3_19 Vosburgh 3D slicer: A platform for subject-specific image analysis, visualization, and clinical support. Intraoperative imaging image-guided ther.
- Real-time simultaneous triplane contrast echocardiography gives rapid, accurate, and reproducible assessment of left ventricular volumes and ejection fraction: a comparison with magnetic resonance imaging.J Am Soc Echocardiogr. 2006; 19: 1494-1501https://doi.org/10.1016/J.ECHO.2006.06.021
- The Probabilistic Basis of Jaccard’s Index of Similarity.Artic Syst Biol. 1996; 45: 380-385https://doi.org/10.1093/sysbio/45.3.380
- An evaluation of four automatic methods of segmenting the subcortical structures in the brain.Neuroimage. 2009; 47: 1435-1447https://doi.org/10.1016/j.neuroimage.2009.05.029
- Experiments: planning, analysis, and parameter design optimization.Wiley, 2011
- Statistical methods for assessing agreement between two methods of clinical measurement.Int J Nurs Stud. 2010; 47: 931-936https://doi.org/10.1016/J.IJNURSTU.2009.10.001
- Efficient inference in fully connected crfs with gaussian edge potentials.Adv Neural Inf Process Syst. 2011; : 109-117