Advertisement
Technical note| Volume 70, P161-168, February 2020

Ultrasound-driven cardiac MRI

Published:February 04, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.01.008

      Highlights

      • Organ motion is a challenge in MRI.
      • Ultrasound imaging can capture this motion in real time with high spatial resolution.
      • Ultrasonography and MRI can be performed simultaneously.
      • This information can be used to update the MR acquisition in real time.

      Abstract

      Purpose

      One of the challenges of cardiac MR imaging is the compensation of respiratory motion, which causes the heart and the surrounding tissues to move. Commonly-used methods to overcome this effect, breath-holding and MR navigation, present shortcomings in terms of available acquisition time or need to periodically interrupt the acquisition, respectively. In this work, an implementation of respiratory motion compensation that obtains information from abdominal ultrasound and continuously adapts the imaged slice position in real time is presented.

      Methods

      A custom workflow was developed, comprising an MR-compatible ultrasound acquisition system, a feature-motion-tracking system with polynomial predictive capability, and a custom MR sequence that continuously adapts the position of the acquired slice according to the tracked position. The system was evaluated on a moving phantom by comparing sharpness and image blurring between static and moving conditions, and in vivo by tracking the motion of the blood vessels of the liver to estimate the cardiac motion. Cine images of the heart were acquired during free breathing.

      Results

      In vitro, the predictive motion correction yielded significantly better results than non-predictive or non-corrected acquisitions (p ≪ 0.01). In vivo, the predictive correction resulted in an image quality very similar to the breath-hold acquisition, whereas the uncorrected images show noticeable blurring artifacts.

      Conclusion

      In this work, the possibility of using ultrasound navigation with tracking for the real-time adaptation of MR imaging slices was demonstrated. The implemented technique enabled efficient imaging of the heart with resolutions that would not be feasible in a single breath-hold.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ehman R.L.
        • McNamara M.T.
        • Pallack M.
        • Hricak H.
        • Higgins C.B.
        Magnetic resonance imaging with respiratory gating: techniques and advantages.
        AJR Am J Roentgenol. 1984; 143: 1175-1182https://doi.org/10.2214/ajr.143.6.1175
        • Wang Y.
        • Rossman P.J.
        • Grimm R.C.
        • Riederer S.J.
        • Ehman R.L.
        Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography.
        Radiology. 1996; 198: 55-60https://doi.org/10.1148/radiology.198.1.8539406
        • Spuentrup E.
        • Buecker A.
        • Karassimos E.
        • Günther R.W.
        • Stuber M.
        Navigator-gated and real-time motion corrected free-breathing MR Imaging of myocardial late enhancement.
        RoFo Fortschr Geb Rontgenstr Nuklearmed. 2002; 174: 562-567https://doi.org/10.1055/s-2002-28271
        • Peters D.C.
        • Wylie J.V.
        • Hauser T.H.
        • Kissinger K.V.
        • Botnar R.M.
        • Essebag V.
        • et al.
        Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience.
        Radiology. 2007; 243: 690-695https://doi.org/10.1148/radiol.2433060417
        • Ginami G.
        • Bonanno G.
        • Schwitter J.
        • Stuber M.
        • Piccini D.
        An iterative approach to respiratory self-navigated whole-heart coronary MRA significantly improves image quality in a preliminary patient study.
        Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2015; https://doi.org/10.1002/mrm.25761
        • Coppo S.
        • Piccini D.
        • Bonanno G.
        • Chaptinel J.
        • Vincenti G.
        • Feliciano H.
        • et al.
        Free-running 4D whole-heart self-navigated golden angle MRI: initial results.
        Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2014; https://doi.org/10.1002/mrm.25523
        • Piccini D.
        • Littmann A.
        • Nielles-Vallespin S.
        • Zenge M.O.
        Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool.
        Magn Reson Med. 2012; 68: 571-579https://doi.org/10.1002/mrm.23247
        • Bonanno G.
        • Puy G.
        • Wiaux Y.
        • van Heeswijk R.B.
        • Piccini D.
        • Stuber M.
        Self-navigation with compressed sensing for 2D translational motion correction in free-breathing coronary MRI: a feasibility study.
        PLoS ONE. 2014; 9e105523https://doi.org/10.1371/journal.pone.0105523
        • Feng L.
        • Axel L.
        • Chandarana H.
        • Block K.T.
        • Sodickson D.K.
        • Otazo R.
        XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.
        Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2015; https://doi.org/10.1002/mrm.25665
        • Feng L.
        • Coppo S.
        • Piccini D.
        • Yerly J.
        • Lim R.P.
        • Masci P.G.
        • et al.
        5D whole-heart sparse MRI.
        Magn Reson Med. 2018; 79: 826-838https://doi.org/10.1002/mrm.26745
        • Walheim J.
        • Dillinger H.
        • Kozerke S.
        Multipoint 5D flow cardiovascular magnetic resonance – accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities.
        J Cardiovasc Magn Reson. 2019; 21https://doi.org/10.1186/s12968-019-0549-0
        • Günther M.
        • Feinberg D.A.
        Ultrasound-guided MRI: preliminary results using a motion phantom.
        Magn Reson Med. 2004; 52: 27-32https://doi.org/10.1002/mrm.20140
      1. de Senneville BD, Regard Y, Moonen CTW, Ries M. Combined ultrasound echography and magnetic resonance imaging guidance for direct and indirect target tracking. 2014 IEEE 11th Int. Symp. Biomed. Imaging ISBI, 2014, p. 1176–9. https://doi.org/10.1109/ISBI.2014.6868085.

        • Sherwood V.
        • Civale J.
        • Rivens I.
        • Collins D.J.
        • Leach M.O.
        • ter Haar G.R.
        Development of a hybrid magnetic resonance and ultrasound imaging system.
        Biomed Res Int. 2014; 2014e914347https://doi.org/10.1155/2014/914347
        • Chandrana C.
        • Bevan P.
        • Hudson J.
        • Pang I.
        • Burns P.
        • Plewes D.
        • et al.
        Development of a platform for co-registered ultrasound and MR contrast imaging in vivo.
        Phys Med Biol. 2011; 56: 861-877https://doi.org/10.1088/0031-9155/56/3/020
        • Crowe L.A.
        • Manasseh G.
        • Chmielewski A.
        • Hachulla A.-L.
        • Speicher D.
        • Greiser A.
        • et al.
        Spatially resolved MR-compatible doppler ultrasound: proof of concept for triggering of diagnostic quality cardiovascular MRI for function and flow quantification at 3T.
        IEEE Trans Biomed Eng. 2018; 65: 294-306https://doi.org/10.1109/TBME.2017.2764111
        • Celicanin Z.
        • Auboiroux V.
        • Bieri O.
        • Petrusca L.
        • Santini F.
        • Viallon M.
        • et al.
        Real-time method for motion-compensated MR thermometry and MRgHIFU treatment in abdominal organs.
        Magn Reson Med. 2014; 72: 1087-1095https://doi.org/10.1002/mrm.25017
        • Petrusca L.
        • Cattin P.
        • De Luca V.
        • Preiswerk F.
        • Celicanin Z.
        • Auboiroux V.
        • et al.
        Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen.
        Invest Radiol. 2013; 48: 333-340https://doi.org/10.1097/RLI.0b013e31828236c3
        • Kording F.
        • Schoennagel B.
        • Lund G.
        • Ueberle F.
        • Jung C.
        • Adam G.
        • et al.
        Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: a pilot study.
        Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2014; https://doi.org/10.1002/mrm.25502
        • Feinberg D.A.
        • Giese D.
        • Bongers D.A.
        • Ramanna S.
        • Zaitsev M.
        • Markl M.
        • et al.
        Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control.
        Magn Reson Med. 2010; 63: 290-296https://doi.org/10.1002/mrm.22250
        • Tretbar S.H.
        • Hewener H.J.
        • Speicher D.
        • Barthscherer T.
        • Bongers A.
        • Jenne J.W.
        • et al.
        MR-compatible ultrasound research platform for motion tracking to reduce motion induced artifacts in MR imaging.
        Ultrason Symp IUS 2013 IEEE Int. 2013; : 553-556https://doi.org/10.1109/ULTSYM.2013.0143
        • Schwartz B.M.
        • McDannold N.J.
        Ultrasound echoes as biometric navigators.
        Magn Reson Med. 2013; 69: 1023-1033https://doi.org/10.1002/mrm.24336
        • Liu G.
        • Qi X.-L.
        • Robert N.
        • Dick A.J.
        • Wright G.A.
        Ultrasound-guided identification of cardiac imaging windows.
        Med Phys. 2012; 39: 3009-3018https://doi.org/10.1118/1.4711757
        • Lorton O.
        • Guillemin P.C.
        • Mori N.
        • Crowe L.A.
        • Boudabbous S.
        • Terraz S.
        • et al.
        Self-scanned HIFU ablation of moving tissue using real-time hybrid US-MR imaging.
        IEEE Trans Biomed Eng. 2019; 66: 2182-2191https://doi.org/10.1109/TBME.2018.2885233
        • Canny J.
        A computational approach to edge detection.
        IEEE Trans Pattern Anal Mach Intell. 1986; PAMI-8: 679-698https://doi.org/10.1109/TPAMI.1986.4767851
      2. Kumar J, Chen F, Doermann D. Sharpness estimation for document and scene images. Proc. 21st Int. Conf. Pattern Recognit. ICPR2012, IEEE; 2012.

      3. Wireshark – Go Deep n.d. https://www.wireshark.org/ (accessed April 30, 2018).

      4. OpenCV library n.d. https://opencv.org/ (accessed July 31, 2018).

        • Nagle J.
        Congestion control in IP/TCP internetworks.
        ACM SIGCOMM Comput Commun Rev. 1984; 14: 11-17https://doi.org/10.1145/1024908.1024910
      5. Braden R. Requirements for Internet Hosts – Communication Layers. RFC Editor; 1989. https://doi.org/10.17487/rfc1122.

      6. Postel J. User Datagram Protocol. RFC Editor; 1980. https://doi.org/10.17487/rfc0768.