Advertisement
Original paper| Volume 70, P109-117, February 2020

Download started.

Ok

Simulation of hypoxia PET-tracer uptake in tumours: Dependence of clinical uptake-values on transport parameters and arterial input function

  • Isabela Paredes-Cisneros
    Correspondence
    Corresponding author at: Im Neuenheimer Feld 280, German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology (E040), Applied Medical Radiation Physics (E040-2), 69120 Heidelberg, Germany.
    Affiliations
    German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany

    Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany

    Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
    Search for articles by this author
  • Christian P. Karger
    Affiliations
    German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany

    Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
    Search for articles by this author
  • Paola Caprile
    Affiliations
    Pontificia Universidad Católica de Chile, Institute of Physics, Santiago, Chile
    Search for articles by this author
  • David Nolte
    Affiliations
    Universidad de Chile, Center for Mathematical Modeling, Santiago, Chile

    University of Groningen, Johann Bernoulli Institute, Groningen, The Netherlands
    Search for articles by this author
  • Ignacio Espinoza
    Affiliations
    Pontificia Universidad Católica de Chile, Institute of Physics, Santiago, Chile
    Search for articles by this author
  • Araceli Gago-Arias
    Affiliations
    Pontificia Universidad Católica de Chile, Institute of Physics, Santiago, Chile

    Instituto de Investigación Sanitaria de Santiago (IDIS), Group of Medical Physics and Biomathematics, Santiago de Compostela, Spain
    Search for articles by this author
Published:January 29, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.01.012

      Abstract

      Poor radiotherapy outcome is in many cases related to hypoxia, due to the increased radioresistance of hypoxic tumour cells. Positron emission tomography may be used to non-invasively assess the oxygenation status of the tumour using hypoxia-specific radiotracers. Quantification and interpretation of these images remains challenging, since radiotracer binding and oxygen tension are not uniquely related. Computer simulation is a useful tool to improve the understanding of tracer dynamics and its relation to clinical uptake parameters currently used to quantify hypoxia. In this study, a model for simulating oxygen and radiotracer distribution in tumours was implemented to analyse the impact of physiological transport parameters and of the arterial input function (AIF) on: oxygenation histograms, time-activity curves, tracer binding and clinical uptake-values (tissue-to-blood ratio, TBR, and a composed hypoxia-perfusion metric, FHP). Results were obtained for parallel and orthogonal vessel architectures and for vascular fractions (VFs) of 1% and 3%. The most sensitive parameters were the AIF and the maximum binding rate ( K max ). TBR allowed discriminating VF for different AIF, and FHP for different K max , but neither TBR nor FHP were unbiased in all cases. Biases may especially occur in the comparison of TBR- or FHP-values between different tumours, where the relation between measured and actual AIF may vary. Thus, these parameters represent only surrogates rather than absolute measurements of hypoxia in tumours.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nordsmark M.
        • Overgaard M.
        • Overgaard J.
        Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck.
        Radiother Oncol. 1996; 41: 31-39https://doi.org/10.1016/S0167-8140(96)91811-3
        • Vaupel P.
        Tumor microenvironmental physiology and its implications for radiation oncology.
        Semin Radiat Oncol. 2004; 14: 198-206https://doi.org/10.1016/j.semradonc.2004.04.008
        • Li F.
        • Joergensen J.T.
        • Hansen A.E.
        • Kjaer A.
        Kinetic modeling in PET imaging of hypoxia.
        Am J Nucl Med Mol Imaging. 2014; 4: 490-506https://doi.org/10.1056/NEJMra1313875
        • Peeters S.G.J.A.
        • Zegers C.M.L.
        • Lieuwes N.G.
        • Van Elmpt W.
        • Eriksson J.
        • Van Dongen G.A.M.S.
        • et al.
        A comparative study of the hypoxia PET tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a preclinical tumor model.
        Int J Radiat Oncol Biol Phys. 2015; 91: 351-359https://doi.org/10.1016/j.ijrobp.2014.09.045
        • Zips D.
        • Zöphel K.
        • Abolmaali N.
        • Perrin R.
        • Abramyuk A.
        • Haase R.
        • et al.
        Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer.
        Radiother Oncol. 2012; 105: 21-28https://doi.org/10.1016/j.radonc.2012.08.019
        • Welz S.
        • Mönnich D.
        • Pfannenberg C.
        • Nikolaou K.
        • Reimold M.
        • La Fougère C.
        • et al.
        Prognostic value of dynamic hypoxia PET in head and neck cancer: results from a planned interim analysis of a randomized phase II hypoxia-image guided dose escalation trial.
        Radiother Oncol. 2017; 124: 526-532https://doi.org/10.1016/j.radonc.2017.04.004
        • Mortensen L.S.
        • Johansen J.
        • Kallehauge J.
        • Primdahl H.
        • Busk M.
        • Lassen P.
        • et al.
        FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial.
        Radiother Oncol. 2012; 105: 14-20https://doi.org/10.1016/j.radonc.2012.09.015
        • Thorwarth D.
        • Eschmann S.M.
        • Paulsen F.
        • Alber M.
        Hypoxia dose painting by numbers: a planning study.
        Int J Radiat Oncol Biol Phys. 2007; 68: 291-300https://doi.org/10.1016/j.ijrobp.2006.11.061
        • Thorwarth D.
        • Geets X.
        • Paiusco M.
        Physical radiotherapy treatment planning based on functional PET/CT data.
        Radiother Oncol. 2010; 96: 317-324https://doi.org/10.1016/j.radonc.2010.07.012
        • Grimes D.R.
        • Warren D.R.
        • Warren S.
        Hypoxia imaging and radiotherapy: bridging the resolution gap.
        Br J Radiol. 2017; 90https://doi.org/10.1259/bjr.20160939
        • Daşu A.
        • Toma-Daşu I.
        • Karlsson M.
        Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia.
        Phys Med Biol. 2003; 48: 2829-2842https://doi.org/10.1088/0031-9155/48/17/307
        • Espinoza I.
        • Peschke P.
        • Karger C.P.
        A model to simulate the oxygen distribution in hypoxic tumors for different vascular architectures.
        Med Phys. 2013; 40: 1-12https://doi.org/10.1118/1.4812431
        • Toma-Dasu I.
        • Dasu A.
        Modelling tumour oxygenation, reoxygenation and implications on treatment outcome.
        Comput Math Methods Med. 2013; 2013https://doi.org/10.1155/2013/141087
        • Casciari J.J.
        • Rasey J.S.
        Determination of the radiobiologically hypoxic fraction in multicellular spheroids from data on the uptake of [3 H]fluoromisonidazole.
        Radiat Res. 1995; 141: 28https://doi.org/10.2307/3579086
        • Thorwarth D.
        • Eschmann S.M.
        • Paulsen F.
        • Alber M.
        A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia.
        Phys Med Biol. 2005; 50: 2209-2224https://doi.org/10.1088/0031-9155/50/10/002
        • Kelly C.J.
        • Brady M.
        A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data.
        Phys Med Biol. 2006; 51: 5859-5873https://doi.org/10.1088/0031-9155/51/22/009
        • Mönnich D.
        • Troost E.G.C.
        • Kaanders J.H.A.M.
        • Oyen W.J.G.
        • Alber M.
        • Thorwarth D.
        Modelling and simulation of [18F]fluoromisonidazole dynamics based on histology-derived microvessel maps.
        Phys Med Biol. 2011; 56: 2045-2057https://doi.org/10.1088/0031-9155/56/7/009
        • Mönnich D.
        • Troost E.G.C.
        • Kaanders J.H.A.M.
        • Oyen W.J.G.
        • Alber M.
        • Thorwarth D.
        Modelling and simulation of the influence of acute and chronic hypoxia on [18F]fluoromisonidazole PET imaging.
        Phys Med Biol. 2012; 57: 1675-1684https://doi.org/10.1088/0031-9155/57/6/1675
        • Mönnich D.
        • Troost E.G.C.
        • Kaanders J.H.A.M.
        • Oyen W.J.G.
        • Alber M.
        • Zips D.
        • et al.
        Correlation between tumor oxygenation and 18F-fluoromisonidazole PET data simulated based on microvessel images.
        Acta Oncol (Madr). 2013; 52: 1308-1313https://doi.org/10.3109/0284186X.2013.812796
        • Skeldon A.C.
        • Chaffey G.
        • Lloyd D.J.B.
        • Mohan V.
        • Bradley D.A.
        • Nisbet A.
        Modelling and detecting tumour oxygenation levels.
        PLoS One. 2012; 7: 1-17https://doi.org/10.1371/journal.pone.0038597
        • Wack L.J.
        • Mönnich D.
        • Van Elmpt W.
        • Zegers C.M.L.
        • Troost E.G.C.
        • Zips D.
        • et al.
        Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia - a simulation study.
        Acta Oncol (Madr). 2015; 54: 1370-1377https://doi.org/10.3109/0284186X.2015.1067721
        • Wack L.J.
        • Monnich D.
        • Yaromina A.
        • Zips D.
        • Baumann M.
        • Thorwarth D.
        Correlation of FMISO simulations with pimonidazole-stained tumor xenografts: a question of O2 consumption?.
        Med Phys. 2016; 43: 4113https://doi.org/10.1118/1.4951728
        • Warren D.R.
        • Partridge M.
        The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study.
        Phys Med Biol. 2016; 61: 8596-8624https://doi.org/10.1088/1361-6560/61/24/8596
        • Secomb T.W.
        • Hsu R.
        • Park E.Y.H.
        • Dewhirst M.W.
        Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks.
        Ann Biomed Eng. 2004; 32: 1519-1529https://doi.org/10.1114/B:ABME.0000049036.08817.44
        • Cowan D.
        • Hicks K.
        • Wilson W.
        Multicellular membranes as an in vitro model for extravascular diffusion in tumours.
        Br J Cancer. 1996; 74: 28-31
        • Rasey J.S.
        • Koh W.J.
        • Grierson J.R.
        • Grunbaum Z.
        • Krohn K.A.
        Radiolabeled fluoromisonidazole as an imaging agent for tumor hypoxia.
        Int J Radiat Oncol Biol Phys. 1989; 17: 985-991https://doi.org/10.1016/0360-3016(89)90146-6
        • Harriss-Phillips W.M.
        • Bezak E.
        • Yeoh E.
        The HYP-RT hypoxic tumour radiotherapy algorithm and accelerated repopulation dose per fraction study.
        Comput Math Methods Med. 2012; 2012https://doi.org/10.1155/2012/363564
      1. Geuzaine C, Remacle JJ. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, (2019). http://gmsh.info/ [Accessed February 20, 2019].

      2. Alnæ MS, Blechta J, Hake J, Johansson A, Kehlet B, Richardson C, Ring J, Rognes ME, Wells GN. The FEniCS Project Version 1.5, Arch. Numer. Softw. 3 (2015) 9–23. https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553/20092 [Accessed July 19, 2019].

      3. Kitware, ParaView, (2017). https://www.paraview.org/ [Accessed February 20, 2019].

        • Mena-Romano P.
        • Cheng C.
        • Glowa C.
        • Peschke P.
        • Pan L.
        • Haberkorn U.
        • et al.
        Measurement of hypoxia-related parameters in three sublines of a rat prostate carcinoma using dynamic 18F-FMISO-PET-CT and quantitative histology.
        Am J Nucl Med Mol Imaging. 2015; 5: 348-362https://doi.org/10.1016/S0167-8140(15)31924-1