Advertisement
Original paper| Volume 70, P75-84, February 2020

Download started.

Ok

Evaluation of the complexity of treatment plans from a national IMRT/VMAT audit – Towards a plan complexity score

Published:January 23, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.01.015

      Highlights

      • Plan complexity of a national IMRT/VMAT audit was evaluated and compared.
      • Principal component analysis was used to obtain a global plan complexity score.
      • The global score highlighted differences in complexity between technology/technique.
      • The proposed methodology can be applied to any given plans set.
      • The resulting scores may be used to compare the complexity among the plans set.

      Abstract

      Purpose

      This work aimed to characterize and compare the complexity of the plans created in the context of a national IMRT/VMAT audit. A plan complexity score is proposed to summarize all the evaluated complexity features.

      Materials and methods

      Nine complexity metrics have been computed for the audit plans, evaluating different complexity aspects. An approach based on Principal Component Analysis was followed to explore the correlation between the metrics and derive a smaller set of new uncorrelated variables (principal components, PCs). The resulting PCs were then used to calculate a plan complexity score. Plan quality was also assessed and the correlation between plan complexity, quality and deliverability investigated using the Spearman's rank correlation coefficient.

      Results

      The first two PCs explained over 90% of the total variance in the original dataset. Their representation allowed to identify patterns in the data, namely a clear separation between plans created using different technologies/techniques. The calculated plan complexity score quantified these differences. Sliding window Eclipse plans were found to be the most complex and VMAT Eclipse group presented the highest complexity variability, for the evaluated parameters. Concerning plan quality, no differences between treatment technology/technique have been identified. However, plans with larger number of monitor units tended to be associated with higher deviations between calculated and measured doses.

      Conclusions

      The proposed plan complexity score allowed to summarize the differences not only inter- but also intra-groups of technologies/techniques, paving the way for improvement of the planning strategies at the national level through knowledge sharing.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fenkell L.
        • Kaminsky I.
        • Breen S.
        • Huang S.
        • Van Prooijen M.
        • Ringash J.
        Dosimetric comparison of IMRT vs. 3D conformal radiotherapy in the treatment of cancer of the cervical esophagus.
        Radiother Oncol. 2008; 89: 287-291https://doi.org/10.1016/j.radonc.2008.08.008
        • Nutting C.M.
        • Morden J.P.
        • Harrington K.J.
        • Urbano T.G.
        • Bhide S.A.
        • Clark C.
        • et al.
        Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial.
        Lancet Oncol. 2011; 12: 127-136https://doi.org/10.1016/S1470-2045(10)70290-4
        • Santos T.
        • Lopes M.C.
        • Gershkevitsh E.
        • Vinagre F.
        • Faria D.
        • Carita L.
        • et al.
        IMRT national audit in Portugal.
        Phys Medica. 2019; 65: 128-136https://doi.org/10.1016/j.ejmp.2019.08.013
        • Mohan R.
        • Arnfield M.
        • Tong S.
        • Wu Q.
        • Siebers J.
        The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy.
        Med Phys. 2000; 27: 1226-1237https://doi.org/10.1118/1.599000
        • Crowe S.B.
        • Kairn T.
        • Kenny J.
        • Knight R.T.
        • Hill B.
        • Langton C.M.
        • et al.
        Treatment plan complexity metrics for predicting IMRT pre-treatment quality assurance results.
        Australas Phys Eng Sci Med. 2014; 37: 475-482https://doi.org/10.1007/s13246-014-0274-9
        • McNiven A.L.
        • Sharpe M.B.
        • Purdie T.G.
        A new metric for assessing IMRT modulation complexity and plan deliverability.
        Med Phys. 2010; 37: 505-515https://doi.org/10.1118/1.3276775
        • Llacer J.
        • Solberg T.D.
        • Promberger C.
        Comparative behaviour of the dynamically penalized likelihood algorithm in inverse radiation therapy planning.
        Phys Med Biol. 2001; 46: 2637https://doi.org/10.1088/0031-9155/46/10/309
        • Webb S.
        Use of a quantitative index of beam modulation to characterize dose conformality: illustration by a comparison of full beamlet IMRT, few-segment IMRT (fsIMRT) and conformal unmodulated radiotherapy.
        Phys Med Biol. 2003; 48: 2051-2062https://doi.org/10.1088/0031-9155/48/14/301
        • Du W.
        • Cho S.H.
        • Zhang X.
        • Hoffman K.E.
        • Kudchadker R.J.
        Quantification of beam complexity in intensity-modulated radiation therapy treatment plans.
        Med Phys. 2014; 41https://doi.org/10.1118/1.4861821
        • Younge K.C.
        • Matuszak M.M.
        • Moran J.M.
        • McShan D.L.
        Penalization of aperture complexity in inversely planned volumetric modulated arc therapy.
        Med Phys. 2012; 39: 7160-7170https://doi.org/10.1118/1.4762566
        • Park J.M.
        • Park S.Y.
        • Kim H.
        • Ho Kim J.
        • Carlson J.
        • Ye S.J.
        Modulation indices for volumetric modulated arc therapy.
        Phys Med Biol. 2014; 59: 7315-7340https://doi.org/10.1088/0031-9155/59/23/7315
        • Masi L.
        • Doro R.
        • Favuzza V.
        • Cipressi S.
        • Livi L.
        Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy.
        Med Phys. 2013; 40https://doi.org/10.1118/1.4810969
        • Chiavassa S.
        • Bessieres I.
        • Edouard M.
        • Mathot M.
        • Moignier A.
        Complexity metrics for IMRT and VMAT plans: a review of current literature and applications.
        Br J Radiol. 2019; 92: 20190270https://doi.org/10.1259/bjr.20190270
        • Antoine M.
        • Ralite F.
        • Soustiel C.
        • Marsac T.
        • Sargos P.
        • Cugny A.
        • et al.
        Use of metrics to quantify IMRT and VMAT treatment plan complexity: a systematic review and perspectives.
        Phys Medica. 2019; 64: 98-108https://doi.org/10.1016/j.ejmp.2019.05.024
        • Hernandez V.
        • Saez J.
        • Pasler M.
        • Jurado-Bruggeman D.
        • Jornet N.
        Comparison of complexity metrics for multi-institutional evaluations of treatment plans in radiotherapy.
        Phys Imaging Radiat Oncol. 2018; 5: 37-43https://doi.org/10.1016/j.phro.2018.02.002
        • Jurado-Bruggeman D.
        • Hernandez V.
        • Saez J.
        • Navarro D.
        • Pino F.
        • Martinez T.
        • et al.
        Multi-centre audit of VMAT planning and pre-treatment verification.
        Radiother Oncol. 2017; 124: 302-310https://doi.org/10.1016/j.radonc.2017.05.019
        • McGarry C.K.
        • Agnew C.E.
        • Hussein M.
        • Tsang Y.
        • McWilliam A.
        • Hounsell A.R.
        • et al.
        The role of complexity metrics in a multi-institutional dosimetry audit of VMAT.
        Br J Radiol. 2016; 89https://doi.org/10.1259/bjr.20150445
        • Glenn M.C.
        • Hernandez V.
        • Saez J.
        • Followill D.S.
        • Howell R.M.
        • Pollard-Larkin J.M.
        • et al.
        Treatment plan complexity does not predict IROC Houston anthropomorphic head and neck phantom performance.
        Phys Med Biol. 2018; 63https://doi.org/10.1088/1361-6560/aae29e
        • Gurney-Champion O.J.
        • Collins D.J.
        • Wetscherek A.
        • Rata M.
        • Klaassen R.
        • van Laarhoven H.W.M.
        • et al.
        Principal component analysis for fast and model-free denoising of multi b-value diffusion-weighted MR images.
        Phys Med Biol. 2019; 64105015https://doi.org/10.1088/1361-6560/ab1786
        • Benestad R.
        • Parding K.
        • Dobler A.
        • Mezghani A.
        A strategy to effectively make use of large volumes of climate data for climate change adaptation.
        Clim Serv. 2017; 6: 48-54https://doi.org/10.1016/j.cliser.2017.06.013
        • Tsiamas P.
        • Bagher-Ebadian H.
        • Siddiqui F.
        • Liu C.
        • Hvid C.A.
        • Kim J.P.
        • et al.
        Principal component analysis modeling of Head-and-Neck anatomy using daily Cone Beam-CT images.
        Med Phys. 2018; 45: 5366-5375https://doi.org/10.1002/mp.13233
        • Jolliffe I.T.
        • Cadima J.
        • Cadima J.
        Principal component analysis: a review and recent developments Subject Areas.
        Philol. Trans. R. Soc. A. 2016; 374: 1-16https://doi.org/10.1098/rsta.2015.0202
        • Ventura T.
        • Lopes M.C.
        • Ferreira B.C.
        • Khouri L.
        SPIDERplan: a tool to support decision-making in radiation therapy treatment plan assessment.
        Rep Pract Oncol Radiother. 2016; 21: 508-516https://doi.org/10.1016/j.rpor.2016.07.002
        • Kazantsev P.
        • Lechner W.
        • Gershkevitsh E.
        • Clark C.H.
        • Venencia D.
        • Van Dyk J.
        • et al.
        IAEA methodology for on-site end-to-end IMRT/VMAT audits: an international pilot study.
        Acta Oncol. 2019; : 1-8https://doi.org/10.1080/0284186X.2019.1685128
      1. Lee N, Garden A, Kim J, Mechalakos J, Pfister DG, Ang KA, et al. A phase II study of concurrent chemoradiotherapy using three-dimensional conformal radiotheray (3D-CRT) or Intensity-Modulated Radiation Therapy (IMRT) + Bezacizumab (BV) for locally or regionally advanced nasopharyngeal cancer. NRG Oncology – RTOG 0615 2014.

        • Vyas S.
        • Kumaranayake L.
        Constructing socio-economic status indices: how to use principal components analysis.
        Heath Policy Plan. 2006; 21: 459-468https://doi.org/10.1093/heapol/czl029
      2. Antony GM, Rao KV. A composite index to explain variations in poverty, health, nutritional status and standard of living: Use of multivariate statistical methods. Public Health 2007:578–87. https://doi.org/10.1016/j.puhe.2006.10.018.

        • Chun M.
        • Joon An H.
        • Kwon O.
        • Oh D.H.
        • Park J.M.
        • Kim J.-I.
        Impact of plan parameters and modulation indices on patient-specific QA results for standard and stereotactic VMAT.
        Phys Med. 2019; 62: 83-94https://doi.org/10.1016/j.ejmp.2019.05.005
        • Valdes G.
        • Scheuermann R.
        • Hung C.Y.
        • Olszanski A.
        • Bellerive M.
        • Solberg T.D.
        A mathematical framework for virtual IMRT QA using machine learning.
        Med Phys. 2016; 43: 4323https://doi.org/10.1118/1.4953835
        • Shaukat S.
        • Rao T.
        • Khan M.
        Impact of sample size on principal component analysis ordination of an environmental data set: effects on eigenstructure.
        Ekológia. 2016; 35https://doi.org/10.1515/eko-2016-0014
        • Dochtermann N.
        • Jenkins S.
        Multivariate methods and small sample sizes.
        Ethology. 2011; 117: 95-101https://doi.org/10.1111/j.1439-0310.2010.01846.x
        • Jobson J.D.
        Applied Multivariate Data Analysis. vol. 2. Springer-Verlag, USA1992
      3. International Atomic Energy Agency (IAEA). On-site “end-to-end” dosimetry audits. https://dosimetry-audit-networks.iaea.org/Home/EndToEndAudits [accessed October 25, 2019].

        • Nelms B.E.
        • Zhen H.
        • Tome W.A.
        Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors.
        Med Phys. 2011; 38: 1037-1044https://doi.org/10.1118/1.3544657
        • Kruse J.J.
        On the insensitivity of single field planar dosimetry to IMRT inaccuracies.
        Med Phys. 2010; 37: 2516-2524https://doi.org/10.1118/1.3425781
        • Gordon J.
        • Siebers J.
        Addressing a gap in current IMRT quality assurance.
        Int J Radiat Oncol Biol Phys. 2013; 87: 20-21https://doi.org/10.1016/j.ijrobp.2013.03.030
        • Followill D.S.
        • Kry S.F.
        • Qin L.
        • Leif J.
        • Molineu A.
        • Alvarez P.
        • et al.
        The radiological physics Center’s standard dataset for small field size output factors.
        J Appl Clin Med Phys. 2012; 13: 282-289https://doi.org/10.1120/jacmp.v13i5.3962
        • Followill D.S.
        • Kry S.F.
        • Qin L.
        • Leif J.
        • Molineu A.
        • Alvarez P.
        • et al.
        Erratum: The radiological physics Center’s standard dataset for small field size output factors.
        J Appl Clin Med Phys. 2014; 15: 356-357https://doi.org/10.1120/jacmp.v15i2.4757