Advertisement

Knowledge-based automatic optimization of adaptive early-regression-guided VMAT for rectal cancer

Published:January 23, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.01.016

      Highlights

      • KB-optimization for ART early-regression guided boosting technique for rectal cancer.
      • Robust strategy to scale the KB-model of the first phase to the ART-phase.
      • Automatic KB-approach showed better/equal performances compared to clinical plans.
      • A gEUD reduction (up to 3 Gy) was obtained with the KB-optimization.

      Abstract

      Purpose

      To implement a knowledge-based (KB) optimization strategy to our adaptive (ART) early-regression guided boosting technique in neo-adjuvant radio-chemotherapy for rectal cancer.

      Material and methods

      The protocol consists of a first phase delivering 27.6 Gy to tumor/lymph-nodes (2.3 Gy/fr-PTV1), followed by the ART phase concomitantly delivering 18.6 Gy (3.1 Gy/fr) and 13.8 Gy (2.3 Gy/fr) to the residual tumor (PTVART) and to PTV1 respectively. PTVART is obtained by expanding the residual GTV, as visible on MRI at fraction 9. Forty plans were used to generate a KB-model for the first phase using the RapidPlan tool. Instead of building a new model, a robust strategy scaling the KB-model to the ART phase was applied. Both internal and external validation were performed for both phases: all automatic plans (RP) were compared in terms of OARs/PTVs parameters against the original plans (RA).

      Results

      The resulting automatic plans were generally better than or equivalent to clinical plans. Of note, V30Gy and V40Gy were significantly improved in RP plans for bladder and bowel; gEUD analysis showed improvement for KB-modality for all OARs, up to 3 Gy for the bowel.

      Conclusions

      The KB-model generated for the first phase was robust and it was also efficiently adapted to the ART phase. The performance of automatically generated plans were slightly better than the corresponding manual plans for both phases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rödel C.
        • Hofheinz R.
        • Fokas E.
        Rectal cancer: neoadjuvant chemoradiotherapy.
        Best Pract Res Clin Gastroenterol. 2016; 30: 629-639https://doi.org/10.1016/j.bpg.2016.06.004
        • Smith J.J.
        • Garcia-Aguilar J.
        Advances and challenges in treatment of locally advanced rectal cancer.
        J Clin Oncol. 2015; 33: 1797-1808https://doi.org/10.1200/JCO.2014.60.1054
        • Appelt A.L.
        • Pløen J.
        • Harling H.
        • Jensen F.S.
        • Jensen L.H.
        • Jørgensen J.C.R.
        • et al.
        High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study.
        Lancet Oncol. 2015; 16: 919-927https://doi.org/10.1016/S1470-2045(15)00120-5
        • Fiorino C.
        • Cozzarini C.
        • Passoni P.
        The promise of adaptive radiotherapy for pelvic tumors: “too high cost for too little result” or “a low cost for a significant result”?.
        Acta Oncol (Madr). 2016; 55: 939-942https://doi.org/10.1080/0284186X.2016.1203460
        • Passoni P.
        • Fiorino C.
        • Slim N.
        • Ronzoni M.
        • Ricci V.
        • Di Palo S.
        • et al.
        Feasibility of an adaptive strategy in preoperative radiochemotherapy for rectal cancer with image-guided tomotherapy: Boosting the dose to the shrinking tumor.
        Int J Radiat Oncol Biol Phys. 2013; 87: 67-72https://doi.org/10.1016/j.ijrobp.2013.05.004
        • Fiorino C.
        • Passoni P.
        • Palmisano A.
        • Gumina C.
        • Cattaneo G.M.
        • Broggi S.
        • et al.
        Accurate outcome prediction after neo-adjuvant radio-chemotherapy for rectal cancer based on a TCP-based early regression index.
        Clin Transl Radiat Oncol. 2019; 19: 12-16https://doi.org/10.1016/j.ctro.2019.07.001
        • Fiorino C.
        • Gumina C.
        • Passoni P.
        • Palmisano A.
        • Broggi S.
        • Cattaneo G.M.
        • et al.
        A TCP-based early regression index predicts the pathological response in neo-adjuvant radio-chemotherapy of rectal cancer.
        Radiother Oncol. 2018; 128: 564-568https://doi.org/10.1016/j.radonc.2018.06.019
        • Palmisano A.
        • Esposito A.
        • Di Chiara A.
        • Ambrosi A.
        • Passoni P.
        • Slim N.
        • et al.
        Could early tumour volume changes assessed on morphological MRI predict the response to chemoradiation therapy in locally-advanced rectal cancer?.
        Clin Radiol. 2018; 73: 555-563https://doi.org/10.1016/j.crad.2018.01.007
        • Breedveld S.
        • Storchi P.R.M.
        • Voet P.W.J.
        • Heijmen B.J.M.
        ICycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans.
        Med Phys. 2012; 39: 951-963https://doi.org/10.1118/1.3676689
        • Cagni E.
        • Botti A.
        • Micera R.
        • Galeandro M.
        • Sghedoni R.
        • Orlandi M.
        • et al.
        Knowledge-based treatment planning: an inter-technique and inter-system feasibility study for prostate cancer.
        Phys Medica. 2017; 36: 38-45https://doi.org/10.1016/j.ejmp.2017.03.002
        • Krayenbuehl J.
        • Norton I.
        • Studer G.
        • Guckenberger M.
        Evaluation of an automated knowledge based treatment planning system for head and neck.
        Radiat Oncol. 2015; : 10https://doi.org/10.1186/s13014-015-0533-2
        • Schubert C.
        • Waletzko O.
        • Weiss C.
        • Voelzke D.
        • Toperim S.
        • Roeser A.
        • et al.
        Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium.
        PLoS One. 2017; : 12https://doi.org/10.1371/journal.pone.0178034
        • Zarepisheh M.
        • Long T.
        • Li N.
        • Tian Z.
        • Romeijn H.E.
        • Jia X.
        • et al.
        A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning.
        Med Phys. 2014; : 41https://doi.org/10.1118/1.4875700
        • Sharfo A.W.M.
        • Breedveld S.
        • Voet P.W.J.
        • Heijkoop S.T.
        • Mens J.W.M.
        • Hoogeman M.S.
        • et al.
        Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy.
        PLoS One. 2016; 11: 1-13https://doi.org/10.1371/journal.pone.0169202
        • Ge Y.
        • Wu Q.J.
        Knowledge-based planning for intensity-modulated radiation therapy: a review of data-driven approaches.
        Med Phys. 2019; 46: 2760-2775https://doi.org/10.1002/mp.13526
        • Moore K.L.
        Automated radiotherapy treatment planning.
        Semin Radiat Oncol. 2019; 29: 209-218https://doi.org/10.1016/j.semradonc.2019.02.003
        • Chang A.T.Y.
        • Hung A.W.M.
        • Cheung F.W.K.
        • Lee M.C.H.
        • Chan O.S.H.
        • Philips H.
        • et al.
        Comparison of planning quality and efficiency between conventional and knowledge-based algorithms in nasopharyngeal cancer patients using intensity modulated radiation therapy.
        Int J Radiat Oncol Biol Phys. 2016; 95: 981-990https://doi.org/10.1016/j.ijrobp.2016.02.017
        • Fogliata A.
        • Nicolini G.
        • Bourgier C.
        • Clivio A.
        • De Rose F.
        • Fenoglietto P.
        • et al.
        Performance of a knowledge-based model for optimization of volumetric modulated arc therapy plans for single and bilateral breast irradiation.
        PLoS One. 2015; : 10https://doi.org/10.1371/journal.pone.0145137
        • Scaggion A.
        • Fusella M.
        • Roggio A.
        • Bacco S.
        • Pivato N.
        • Rossato M.A.
        • et al.
        Reducing inter- and intra-planner variability in radiotherapy plan output with a commercial knowledge-based planning solution.
        Phys Med. 2018; 53: 86-93https://doi.org/10.1016/j.ejmp.2018.08.016
        • Hussein M.
        • South C.P.
        • Barry M.A.
        • Adams E.J.
        • Jordan T.J.
        • Stewart A.J.
        • et al.
        Clinical validation and benchmarking of knowledge-based IMRT and VMAT treatment planning in pelvic anatomy.
        Radiother Oncol. 2016; 120: 473-479https://doi.org/10.1016/j.radonc.2016.06.022
        • Alpuche Aviles J.E.
        • Cordero Marcos M.I.
        • Sasaki D.
        • Sutherland K.
        • Kane B.
        • Kuusela E.
        Creation of knowledge-based planning models intended for large scale distribution: minimizing the effect of outlier plans.
        J Appl Clin Med Phys. 2018; 19: 215-226https://doi.org/10.1002/acm2.12322
        • Castriconi R.
        • Fiorino C.
        • Broggi S.
        • Cozzarini C.
        • Di Muzio N.
        • Calandrino R.
        • et al.
        Comprehensive Intra-Institution stepping validation of knowledge-based models for automatic plan optimization.
        Phys Med. 2019; 57: 231-237https://doi.org/10.1016/j.ejmp.2018.12.002
        • Raso R.
        • Scalco E.
        • Fiorino C.
        • Broggi S.
        • Cattaneo G.M.
        • Garelli S.
        • et al.
        Assessment and clinical validation of margins for adaptive simultaneous integrated boost in neo-adjuvant radiochemotherapy for rectal cancer.
        Phys Med. 2015; 31: 167-172https://doi.org/10.1016/j.ejmp.2014.12.002
        • Maggiulli E.
        • Fiorino C.
        • Passoni P.
        • Broggi S.
        • Gianolini S.
        • Salvetti C.
        • et al.
        Characterisation of rectal motion during neo-adjuvant radiochemotherapy for rectal cancer with image-guided tomotherapy: implications for adaptive dose escalation strategies.
        Acta Oncol (Madr). 2012; 51: 318-324https://doi.org/10.3109/0284186X.2012.666358
        • Delaney A.R.
        • Tol J.P.
        • Dahele M.
        • Cuijpers J.
        • Slotman B.J.
        • Verbakel W.F.A.R.
        Effect of dosimetric outliers on the performance of a commercial knowledge-based planning solution.
        Int J Radiat Oncol Biol Phys. 2016; 94: 469-477https://doi.org/10.1016/j.ijrobp.2015.11.011
        • Fogliata A.
        • Belosi F.
        • Clivio A.
        • Navarria P.
        • Nicolini G.
        • Scorsetti M.
        • et al.
        On the pre-clinical validation of a commercial model-based optimisation engine: application to volumetric modulated arc therapy for patients with lung or prostate cancer.
        Radiother Oncol. 2014; 113: 385-391https://doi.org/10.1016/j.radonc.2014.11.009
        • Cagni E.
        • Botti A.
        • Wang Y.
        • Iori M.
        • Petit S.F.
        • Heijmen B.J.M.
        Pareto-optimal plans as ground truth for validation of a commercial system for knowledge-based DVH-prediction.
        Phys Med. 2018; 55: 98-106https://doi.org/10.1016/j.ejmp.2018.11.002
      1. Bentzen MJ and S. Fractionation: the linear-quadratic approach 2009:110–27. DOI:10.1201/B15450-11.

        • Allen Li X.
        • Alber M.
        • Deasy J.O.
        • Jackson A.
        • Ken Jee K.W.
        • Marks L.B.
        • et al.
        The use and QA of biologically related models for treatment planning: short report of the TG-166 of the therapy physics committee of the AAPM.
        Med Phys. 2012; 39: 1386-1409https://doi.org/10.1118/1.3685447
        • Landoni V.
        • Fiorino C.
        • Cozzarini C.
        • Sanguineti G.
        • Valdagni R.
        • Rancati T.
        Predicting toxicity in radiotherapy for prostate cancer.
        Phys Med. 2016; 32: 521-532https://doi.org/10.1016/j.ejmp.2016.03.003
        • Fiorino C.
        • Valdagni R.
        • Rancati T.
        • Sanguineti G.
        Dose-volume effects for normal tissues in external radiotherapy: pelvis.
        Radiother Oncol. 2009; https://doi.org/10.1016/j.radonc.2009.08.004
      2. Rancati T, Fiorino C. Modelling radiotherapy side effects : practical applications for planning optimisation. 2019. DOI:10.1201/b21956.

        • Sini C.
        • Noris Chiorda B.
        • Gabriele P.
        • Sanguineti G.
        • Morlino S.
        • Badenchini F.
        • et al.
        Patient-reported intestinal toxicity from whole pelvis intensity-modulated radiotherapy: first quantification of bowel dose–volume effects.
        Radiother Oncol. 2017; 124: 296-301https://doi.org/10.1016/j.radonc.2017.07.005
        • Fiorino C.
        • Alongi F.
        • Perna L.
        • Broggi S.
        • Cattaneo G.M.
        • Cozzarini C.
        • et al.
        Dose-volume relationships for acute bowel toxicity in patients treated with pelvic nodal irradiation for prostate cancer.
        Int J Radiat Oncol Biol Phys. 2009; 75: 29-35https://doi.org/10.1016/j.ijrobp.2008.10.086
        • Tol J.P.
        • Delaney A.R.
        • Dahele M.
        • Slotman B.J.
        • Verbakel W.F.A.R.
        Evaluation of a knowledge-based planning solution for head and neck cancer.
        Int J Radiat Oncol Biol Phys. 2015; 91: 612-620https://doi.org/10.1016/j.ijrobp.2014.11.014
        • Wu H.
        • Jiang F.
        • Yue H.
        • Li S.
        • Zhang Y.
        A dosimetric evaluation of knowledge-based VMAT planning with simultaneous integrated boosting for rectal cancer patients.
        J Appl Clin Med Phys. 2016; 17: 78-85https://doi.org/10.1120/jacmp.v17i6.6410
        • Wu H.
        • Jiang F.
        • Yue H.
        • Zhang H.
        • Wang K.
        • Zhang Y.
        Applying a RapidPlan model trained on a technique and orientation to another: a feasibility and dosimetric evaluation.
        Radiat Oncol. 2016; 11https://doi.org/10.1186/s13014-016-0684-9
        • Nakamatsu K.
        • Kamima T.
        • Adachi Y.
        • Monzen H.
        • Fukunaga J.
        • Ueda Y.
        Evaluation of multiple institutions’ models for knowledge-based planning of volumetric modulated arc therapy (VMAT) for prostate cancer.
        Radiat Oncol. 2018; : 1-11https://doi.org/10.1186/s13014-018-0994-1
        • Berry S.L.
        • Ma R.
        • Boczkowski A.
        • Jackson A.
        • Zhang P.
        • Hunt M.
        Evaluating inter-campus plan consistency using a knowledge based planning model.
        Radiother Oncol. 2016; 120: 349-355https://doi.org/10.1016/j.radonc.2016.06.010
        • Weiss E.
        • Fatyga M.
        • Wu Y.
        • Dogan N.
        • Balik S.
        • Sleeman IV, W.
        • et al.
        Dose escalation for locally advanced lung cancer using adaptive radiation therapy with simultaneous integrated volume-adapted boost.
        Int J Radiat Oncol Biol Phys. 2013; 86: 414-419https://doi.org/10.1016/j.ijrobp.2012.12.027
        • Tanderup K.
        • Georg D.
        • Pötter R.
        • Kirisits C.
        • Grau C.
        • Lindegaard J.C.
        Adaptive management of cervical cancer radiotherapy.
        Semin Radiat Oncol. 2010; 20: 121-129https://doi.org/10.1016/j.semradonc.2009.11.006
        • Thörnqvist S.
        • Hysing L.B.
        • Tuomikoski L.
        • Vestergaard A.
        • Tanderup K.
        • Muren L.P.
        • et al.
        Adaptive radiotherapy strategies for pelvic tumors – a systematic review of clinical implementations.
        Acta Oncol (Madr). 2016; 55: 943-958https://doi.org/10.3109/0284186X.2016.1156738
        • Nawa K.
        • Haga A.
        • Nomoto A.
        • Sarmiento R.A.
        • Shiraishi K.
        • Yamashita H.
        • et al.
        Evaluation of a commercial automatic treatment planning system for prostate cancers.
        Med Dosim. 2017; 42: 203-209https://doi.org/10.1016/j.meddos.2017.03.004
        • Foy J.J.
        • Marsh R.
        • Ten Haken R.K.
        • Younge K.C.
        • Schipper M.
        • Sun Y.
        • et al.
        An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine.
        Pract Radiat Oncol. 2017; 7: e355-e360https://doi.org/10.1016/j.prro.2017.02.007
        • Chatterjee A.
        • Serban M.
        • Abdulkarim B.
        • Panet-Raymond V.
        • Souhami L.
        • Shenouda G.
        • et al.
        Performance of knowledge-based radiation therapy planning for the glioblastoma disease site.
        Int J Radiat Oncol Biol Phys. 2017; 99: 1021-1028https://doi.org/10.1016/j.ijrobp.2017.07.012