Highlight
- •Impact of magnetic fields on the response of a nanoDot OSLD was investigated.
- •Response RQ,B varied depending on the magnetic field strength.
- •Variation of RQ,B reduced as the photon beam energy increased.
- •Top and bottom air- gaps affected the dose deposition due to the electron return effect (ERE).
Abstract
Purpose
Methods
Results
Conclusions
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
- MRI/linac integration.Radiother Oncol. 2008; 86: 25-29https://doi.org/10.1016/j.radonc.2007.10.034
- MRI-linear accelerator radiotherapy systems.Clin Oncol. 2018; 30: 686-691https://doi.org/10.1016/j.clon.2018.08.003
- Dosimetry for the MRI accelerator: The impact of a magnetic field on the response of a Farmer NE2571 ionization chamber.Phys Med Biol. 2009; 54: 2993-3002https://doi.org/10.1088/0031-9155/54/10/002
- Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations.Phys Med Biol. 2017; 62: 6708-6728https://doi.org/10.1088/1361-6560/aa7ae4
- Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors.Med Phys. 2016; 43: 4915-4927https://doi.org/10.1118/1.4959785
- Relative dosimetry with an MR-linac: Response of ion chambers, diamond, and diode detectors for off-axis, depth dose, and output factor measurements: Response.Med Phys. 2018; 45: 884-897https://doi.org/10.1002/mp.12699
- Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields.Med Phys. 2014; 41https://doi.org/10.1118/1.4893276
- Influence of a transverse magnetic field on the response of different detectors in a high energy photon beam near the surface.Med Phys. 2019; 29: 22-30https://doi.org/10.1016/j.zemedi.2018.07.001
- Dosimetry in clinical static magnetic fields using plastic scintillation detectors.Radiat Meas. 2013; 56: 357-360https://doi.org/10.1016/j.radmeas.2013.03.012
- Investigation of magnetic field effects on the dose – Response of 3D dosimeters for magnetic resonance – image guided radiation therapy applications.Radiother Oncol. 2017; 125: 426-432https://doi.org/10.1016/j.radonc.2017.08.027
- Feasibility of dosimetry with optically stimulated luminescence detectors in magnetic fields.Radiat Meas. 2017; 106: 346-351https://doi.org/10.1016/j.radmeas.2017.03.018
- Response of a nanoDot OSLD system in megavoltage photon beams.Phys Med. 2019; 64: 74-80https://doi.org/10.1016/j.ejmp.2019.06.014
- Commissioning of optically stimulated luminescence dosimeters for use in radiotherapy.Radiat Meas. 2013; 51: 31-39https://doi.org/10.1016/j.radmeas.2013.01.012
- Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries.Med Phys. 2015; 42: 5633-5641https://doi.org/10.1118/1.4929558
- The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams: Energy dependence of optically stimulated luminescent detector.Med Phys. 2009; 36: 1690-1699https://doi.org/10.1118/1.3097283
- Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose.Med Phys. 2010; 37: 132-140https://doi.org/10.1118/1.3267489
- On the use of optically stimulated luminescent dosimeter for surface dose measurement during radiotherapy.PLoS One. 2015; 10: 1-15https://doi.org/10.1371/journal.pone. 0128544
- In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters.Med Phys. 2013; 40071730https://doi.org/10.1118/1.4811143
- Multi-institutional evaluation of end-to-end protocol for IMRT/VMAT treatment chains utilizing conventional linacs.Med Dosim. 2019; 44: 61-66https://doi.org/10.1016/j.meddos.2018.02.002
- TLD and OSLD dosimetry systems for remote audits of radiotherapy external beam calibration.Radiat Meas. 2017; 106: 412-415https://doi.org/10.1016/j.radmeas.2017.01.005
- Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters.Med Phys. 2014; 41032102https://doi.org/10.1118/1.4865786
- Long term OSLD reader stability in the ACDS level one audit.Australas Phys Eng Sci Med. 2015; 38: 151-156https://doi.org/10.1007/s13246-014-0320-7
- Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version.Med Phys. 2000; 27: 485-498https://doi.org/10.1118/1.598917
Kawrakow I, Mainegra-Hing E, Rogers DWO, Tessier F, Walters BRB. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. National Research Council of Canada Report 2013;PIRS-701.
- EGSnrc C++ class library: EGSnrc C++ user code, egs_chamber.Nat Res Council of Canada Report. 2009; : PIRS-898
- Kawrakow I. Efficiency improvements for ion chamber calculations in high energy photon beams.Med Phys. 2008; 35: 1328-1336https://doi.org/10.1118/1.2874554
- Fano cavity test for electron Monte Carlo transport algorithms in magnetic fields: comparison between EGSnrc, PENELOPE, MCNP6 and Geant4.Phys Med Biol. 2018; 63195013https://doi.org/10.1088/1361-6560/aadf29
- BEAM: a Monte Carlo code to simulate radiotherapy treatment units.Med Phys. 1995; 22: 503-524https://doi.org/10.1118/1.597552
Rogers DW, Walters BR, Kawrakow I. BEAMnrc Users Manual. National Research Council of Canada Report 2013;PIRS-509 (A) revL.
Berger MJ, Hubbell JH. XCOM: Photon cross sections on a personal computer Report NBSIR87-3597 National Institute of Standards Technology, Gaithersburg, MD 20899; 1987/1999.
- A general theory of cavity ionisation.Br J Radiol. 1966; 39: 727-734https://doi.org/10.1259/0007-1285-39-466-727
- A theory of cavity ionization.Radiat Res. 1995; 3: 239-254
- The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.Med Phys. 2014; 41122102https://doi.org/10.1118/1.4901639
Rogers DWO, Kawrakow I, Seuntjens JP, Walters BRB, Mainegra-Hing E. NRC User Code for EGSnrc. National Research Council of Canada Report 2011;PIRS-702 (revC).
- Stopping-power and mass energy absorption coefficient ratios for solid water.Med Phys. 1986; 13: 403-404https://doi.org/10.1118/1.595884
Seltzer SM, Hubbell J H. Tables and graphs of photon mass attenuation coefficients and mass energy-absorption coefficients for photon energies 1 keV to 20 MeV for elements Z=1 to 92, The X-ray Attenuation and Absorption for Materials of Dosimetric Interest Database, NIST 1996.