Advertisement
Original paper| Volume 75, P1-10, July 2020

MRI-guided voxel-based automatic semi-quantification of dopamine transporter imaging

  • Jiri Trnka
    Correspondence
    Corresponding author at: Department of Medical Physics, General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic.
    Affiliations
    Department of Medical Physics, General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic

    Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Salmovska 3, 120 00 Prague, Czech Republic
    Search for articles by this author
  • Petr Dusek
    Affiliations
    Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 120 00 Prague, Czech Republic

    Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic
    Search for articles by this author
  • Martin Samal
    Affiliations
    Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Salmovska 3, 120 00 Prague, Czech Republic
    Search for articles by this author
  • Karel Kupka
    Affiliations
    Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Salmovska 3, 120 00 Prague, Czech Republic
    Search for articles by this author
  • Karel Sonka
    Affiliations
    Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 120 00 Prague, Czech Republic
    Search for articles by this author
  • Evzen Ruzicka
    Affiliations
    Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Katerinska 32, 120 00 Prague, Czech Republic
    Search for articles by this author

      Highlights

      • Anatomically accurate delineation of volumes-of-interest.
      • Full recovery of striatal uptake.
      • Implemented solely via free and open-source software.

      Abstract

      Purpose

      Functional imaging with 123I-FP-CIT SPECT suffers from poor spatial resolution resulting in partial-volume effect, which affects the subsequent semi-quantification. Definition of regions of interest for semi-quantification is further subject to user's experience and inter-observer variability. The aim of this work has been to develop an automatic method for definition of volumes of interest and partial-volume correction using patient-specific MRI and providing complete contrast recovery in striatal region.

      Method

      The method consists of spatial pre-processing (image segmentation and multi-modality registration), partial-volume correction (performed by region-based voxel-wise technique), and calculation of uptake indices in striatal structures. Anthropomorphic striatal phantom was used to optimize the method and to assess linearity, accuracy, and reproducibility. The method was tested on 58 patient datasets and compared with clinical assessment and BasGan software.

      Results

      The method works automatically. The output is highly linear regarding changing striatal uptake. Complete contrast recovery is achieved using 6.5 mm FWHM. Accuracy is better than 0.15 in terms of RMSE between measured and true uptake indices. Reproducibility is better than 5% for normal uptake ratio. The method outperformed clinical assessment in all measures. With patient data, it provided results closer to BasGan (RMSE 0.9) than to clinical assessment (RMSE 1.9) and fairly correlated with both.

      Conclusion

      The proposed method provides complete recovery of striatal contrast under given acquisition and reconstruction conditions. It reduces intra- and inter-observer variability, accurately defines volumes of interest, and effectively suppresses partial-volume effect. It can be reproduced using publicly available software.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Suwijn SR, van Boheemen CJM, de Haan RJ, Tissingh G, Booij J, de Bie RMA. The diagnostic accuracy of dopamine transporter SPECT imaging to detect nigrostriatal cell loss in patients with Parkinson’s disease or clinically uncertain parkinsonism: a systematic review. EJNMMI Research. 2015;5(12).

        • Benamer T.S.
        • Patterson J.
        • Grosset D.G.
        • Booij J.
        • de Bruin K.
        • van Royen E.
        • et al.
        Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group.
        Mov Disord. 2000; 15: 503-510
        • Thomas B.A.
        • Erlandsson K.
        • Modat M.
        • Thurfjell L.
        • Vandenberghe R.
        • Ourselin S.
        • et al.
        The importance of appropriate partial volume correction for PET quantification in Alzheimer’s disease.
        Eur J Nucl Med Mol Imaging. 2011; 38: 1104-1119
        • Soret M.
        • Bacharach S.L.
        • Buvat I.
        Partial-volume effect in PET tumor imaging.
        J Nucl Med. 2007; 48: 932-945
        • Erlandsson K.
        • Buvat I.
        • Pretorius P.H.
        • Thomas B.A.
        • Hutton B.F.
        A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology.
        Phys Med Biol. 2012; 57: R119-R159
        • Morton R.J.
        • Guy M.J.
        • Clauss R.
        • Hinton P.J.
        • Marshall C.A.
        • Clarke E.A.
        Comparison of different methods of DatSCAN quantification.
        Nucl Med Commun. 2005; 26: 1139-1146
        • Skanjeti A.
        • Castellano G.
        • Elia B.
        • Dazzara F.
        • Zotta M.
        • Yabar G.M.D.
        • et al.
        Standardized semi-quantitative evaluation of [123I]FP-CIT SPECT in a multicenter study.
        Adv Mol Imaging. 2013; 3: 55-60
        • Ziebell M.
        • Pinborg L.H.
        • Thomsen G.
        • de Nijs R.
        • Svarer C.
        • Wagner A.
        • et al.
        MRI-guided region-of-interest delineation is comparable to manual delineation in dopamine transporter SPECT quantification in patients: a reproducibility study.
        J Nucl Med Technol. 2010; 38: 61-68
        • Hsu C.C.
        • Chang Y.H.
        • Lin W.C.
        • Tang S.W.
        • Wang P.W.
        • Huang Y.C.
        • et al.
        The feasibility of using CT-guided ROI for semiquantifying striatal dopamine transporter availability in a hybrid SPECT/CT system.
        Sci World J. 2014; 2014
        • Koch W.
        • Radau P.E.
        • Hamann C.
        • Tatsch K.
        Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter SPECT studies.
        J Nucl Med. 2005; 46: 1109-1118
        • Djang D.S.W.
        • Janssen M.J.R.
        • Bohnen N.
        • Booij J.
        • Henderson T.A.
        • Herholz K.
        • et al.
        Practice guideline for dopamine transporter imaging with 123I-Ioflupane SPECT 1.0.
        J Nucl Med. 2011; 53: 154-163
        • Linke R.
        • Gostomzyk J.
        • Hahn K.
        • Tatsch K.
        [123I]IPT binding to the presynaptic dopamine transporter: variation of intra- and interobserver data evaluation in parkinsonian patients and controls.
        Eur J Nucl Med. 2000; 27: 1809-1812
        • Badiavas K.
        • Molyvda E.
        • Iakovou I.
        • Tsolaki M.
        • Psarrakos K.
        • Karatzas N.
        SPECT imaging evaluation in movement disorders:far beyond visual assessment.
        Eur J Nucl Med Mol Imaging. 2011; 38: 764-773
        • Messa C.
        • Volonté M.A.
        • Fazio F.
        • Zito F.
        • Carpinelli A.
        • d'Amico A.
        • et al.
        Differential distribution of striatal [123I]beta-CIT in Parkinson's disease and progressive supranuclear palsy, evaluated with single-photon emission tomography.
        Eur J Nucl Med. 1998; 25: 1270-1276
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        NeuroImage. 2004; 23: 208-219
      2. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62:782–90.

        • Thomas B.A.
        • Cuplov V.
        • Bousse A.
        • Mendes A.
        • Thielemans K.
        • Hutton B.F.
        • et al.
        PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography.
        Phys Med Biol. 2016; 61: 7975-7993
      3. http://neuro.debian.net.

      4. http://www.gnu.org/software/bash.

        • Jenkinson M.
        • Smith S.M.
        A global optimisation method for robust affine registration of brain images.
        Med Image Anal. 2001; 5: 143-156
        • Jenkinson M.
        • Bannister P.
        • Brady J.M.
        • Smith S.M.
        Improved optimisation for the robust and accurate linear registration and motion correction of brain images.
        NeuroImage. 2002; 17: 825-841
        • Greve D.N.
        • Fischl B.
        Accurate and robust brain image alignment using boundary-based registration.
        NeuroImage. 2009; 48: 63-72
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum Brain Mapp. 2002; 17: 143-155
        • Patenaude B.
        • Smith S.M.
        • Kennedy D.
        • Jenkinson M.
        A Bayesian model of shape and appearance for subcortical brain.
        NeuroImage. 2011; 56: 907-922
        • Rousset O.G.
        • Ma Y.
        • Evans A.C.
        Correction for partial volume effects in PET: principle and validation.
        J Nucl Med. 1998; 39: 904-911
        • Calvini P.
        • Rodriguez G.
        • Inguglia F.
        • Mignone A.
        • Guerra U.P.
        • Nobili F.
        The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation.
        Eur J Nucl Med Mol Imaging. 2007; 34: 1240-1253
      5. http://mipav.cit.nih.gov.

        • Frouin V.
        • Comtat C.
        • Reilhac A.
        • Gregoire M.C.
        Correction of partial-volume effect for PET striatal imaging: fast implementation and study of robustness.
        J Nucl Med. 2002; 43: 1715-1726
        • Soret M.
        • Koulibaly P.M.
        • Darcourt J.
        • Hapdey S.
        • Buvat I.
        Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT.
        J Nucl Med. 2003; 44: 1184-1193
        • Kato H.
        • Shimosegawa E.
        • Oku N.
        • Kitagawa K.
        • Kishima H.
        • Saitoh Y.
        • et al.
        MRI-based correction for partial-volume effect improves detectability of intractable epileptogenic foci on 123I-iomazenil brain SPECT images.
        J Nucl Med. 2008; 49: 3383-3389
        • Matsuda H.
        • Ohnishi T.
        • Asada T.
        • Li Z.J.
        • Kanetaka H.
        • Imabayashi E.
        • et al.
        Correction for partial-volume effects on brain perfusion SPECT in healthy men.
        J Nucl Med. 2003; 44: 1243-1252