Advertisement

Organ motion quantification and margins evaluation in carbon ion therapy of abdominal lesions

      Highlights

      • 2DcineMRI estimates tumour motion in carbon ion therapy of abdominal site.
      • The estimated motion from cineMRI and 4DCT are significant different.
      • Tumor margins built on cineMRI were compared to the clinical margin.
      • The clinical margin was not significant different from the cineMRI one for gating.
      • Gating treatment is robust to inter-fraction and intra-fraction motion.

      Abstract

      Purpose

      In image-guided particle radiotherapy of abdominal lesions, respiratory motion hinders treatment accuracy. In this study, 2D cineMRI data were used to quantify the tumor (GTV) motion and to evaluate the clinical approach based on deriving an internal target volume (ITV) from a planning 4DCT for gating treatments.

      Methods

      Seven patients with abdominal lesions were treated with carbon-ion therapy at the National Centre of Oncological Hadron-therapy (Italy). The MR scan was performed on the same day of the 4DCT acquisition. For four patients, an additional MR was acquired approximately after 1 week. The cineMRI combined with deformable image registration algorithm was used to quantify tumor motion. Afterwards, two ITVs were defined considering (1) all phases (ITVFB) and (2) only phases within the gating window (ITVG), and then compared with the clinical (4DCT-derived) ITVs (ITVCG and ITVCFB).

      Results

      Tumor residual motion estimated by cineMRI data in the two MRI sessions resulted not significantly different from 4DCT, although cineMRI accounted for cycle-to-cycle variations. The ITV normalized for the GTV median values were higher for ITVFB with respect to ITVG, ITVCFB and ITVCG. The Hausdorff distances with respect to the GTV were up to 10.55 mm, 3.13 mm, 5.56 mm and 2.51 mm, for ITVFB, ITVG, ITVCFB and ITVCG, respectively. According to both metrics, ITVCG and ITVG were not found significantly different.

      Conclusions

      CineMRI acquisitions allowed to quantify organ motion without delivering additional dose to the patient and to verify treatment margins in gated carbon-ion therapy of abdominal lesions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Wang Z, Wang W-W, Shahnazi K, Jiang G-L. Carbon Ion Radiation Therapy for Liver Tumors. In: Lee NY, Leeman JE, Cahlon O, Sine K, Jiang G, Lu JJ, et al., editors. Target Vol. Delin. Treat. Plan. Part. Ther. A Pract. Guid., Cham: Springer International Publishing; 2018, p. 221–34. DOI:10.1007/978-3-319-42478-1_14.

        • Shibuya K.
        • Ohno T.
        • Terashima K.
        • Toyama S.
        • Yasuda S.
        • Tsuji H.
        • et al.
        Short-course carbon-ion radiotherapy for hepatocellular carcinoma: a multi-institutional retrospective study.
        Liver Int. 2018; 38: 2239-2247https://doi.org/10.1111/liv.13969
        • Shinoto M.
        • Yamada S.
        • Terashima K.
        • Yasuda S.
        • Shioyama Y.
        • Honda H.
        • et al.
        Carbon ion radiation therapy with concurrent gemcitabine for patients with locally advanced pancreatic cancer.
        Int J Radiat Oncol Biol Phys. 2016; 95: 498-504https://doi.org/10.1016/j.ijrobp.2015.12.362
        • Kawashiro S.
        • Yamada S.
        • Okamoto M.
        • Ohno T.
        • Nakano T.
        • Shinoto M.
        • et al.
        Multi-institutional study of carbon-ion radiotherapy for locally advanced pancreatic cancer: Japan carbon-ion radiation oncology study group (J-CROS) study 1403 pancreas.
        Int J Radiat Oncol Biol Phys. 2018; 101: 1212-1221https://doi.org/10.1016/j.ijrobp.2018.04.057
        • Durante M.
        • Orecchia R.
        • Loeffler J.S.
        Charged-particle therapy in cancer: clinical uses and future perspectives.
        Nat Rev Clin Oncol. 2017; 14: 483-495https://doi.org/10.1038/nrclinonc.2017.30
        • Keall P.J.
        • Mageras G.S.
        • Balter J.M.
        • Emery R.S.
        • Forster K.M.
        • Jiang S.B.
        • et al.
        The management of respiratory motion in radiation oncology report of AAPM Task Group 76.
        Med Phys. 2006; 33: 3874-3900https://doi.org/10.1118/1.2349696
        • Engelsman M.
        • Kooy H.M.
        Target volume dose considerations in proton beam treatment planning for lung tumors.
        Med Phys. 2005; 32: 3549-3557https://doi.org/10.1118/1.2126187
        • Caillet V.
        • Booth J.T.
        • Keall P.
        IGRT and motion management during lung SBRT delivery.
        Phys Med. 2017; 44: 113-122https://doi.org/10.1016/j.ejmp.2017.06.006
        • Chang J.Y.
        • Zhang X.
        • Knopf A.
        • Li H.
        • Mori S.
        • Dong L.
        • et al.
        Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee.
        Int J Radiat Oncol Biol Phys. 2017; 99: 41-50https://doi.org/10.1016/j.ijrobp.2017.05.014
        • Riboldi M.
        • Orecchia R.
        • Baroni G.
        Real-time tumour tracking in particle therapy: technological developments and future perspectives.
        Lancet Oncol. 2012; 13: e383-e391https://doi.org/10.1016/S1470-2045(12)70243-7
        • Kubiak T.
        Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.
        Br J Radiol. 2016; 89: 20150275https://doi.org/10.1259/bjr.20150275
        • Vedam S.S.
        • Keall P.J.
        • Kini V.R.
        • Mostafavi H.
        • Shukla H.P.
        • Mohan R.
        Acquiring a four-dimensional computed tomography dataset using an external respiratory signal.
        Phys Med Biol. 2003; 48: 45-62
        • Dhont J.
        • Vandemeulebroucke J.
        • Burghelea M.
        • Poels K.
        • Depuydt T.
        • Van Den Begin R.
        • et al.
        The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.
        Radiother Oncol. 2018; 126: 339-346https://doi.org/10.1016/j.radonc.2017.09.001
        • Minohara S.
        • Kanai T.
        • Endo M.
        • Noda K.
        • Kanazawa M.
        Respiratory gated irradiation system for heavy-ion radiotherapy.
        Int J Radiat Oncol Biol Phys. 2000; 47: 1097-1103
        • Batista V.
        • Chaudhri N.
        • Richter D.
        • Herfarth K.
        • Jäkel O.
        Internal target volume margins for liver tumours treated with gated scanned carbon-ion radiotherapy.
        Biomed Phys Eng Express. 2017; 3: 15029https://doi.org/10.1088/2057-1976/aa5988
        • Ruan D.
        • Fessler J.A.
        • Balter J.M.
        • Berbeco R.I.
        • Nishioka S.
        • Shirato H.
        Inference of hysteretic respiratory tumor motion from external surrogates: a state augmentation approach.
        Phys Med Biol. 2008; 53: 2923-2936https://doi.org/10.1088/0031-9155/53/11/011
        • Meschini G.
        • Seregni M.
        • Pella A.
        • Ciocca M.
        • Fossati P.
        • Valvo F.
        • et al.
        Evaluation of residual abdominal tumour motion in carbon ion gated treatments through respiratory motion modelling.
        Phys Medica. 2017; 34: 28-37https://doi.org/10.1016/j.ejmp.2017.01.009
        • Paganelli C.
        • Whelan B.
        • Peroni M.
        • Summers P.
        • Fast M.
        • Van De Lindt T.
        • et al.
        MRI-guidance for motion management in external beam radiotherapy: current status and future challenges.
        Phys Med Biol. 2018; 63: aaebcfhttps://doi.org/10.1088/1361-6560/aaebcf
        • Biederer J.
        • Hintze C.
        • Fabel M.
        • Dinkel J.
        Magnetic resonance imaging and computed tomography of respiratory mechanics.
        J Magn Reson Imaging. 2010; 32: 1388-1397https://doi.org/10.1002/jmri.22386
        • Menten M.J.
        • Wetscherek A.
        • Fast M.F.
        MRI-guided lung SBRT: present and future developments.
        Phys Med. 2017; 44: 139-149https://doi.org/10.1016/j.ejmp.2017.02.003
        • Brix L.
        • Ringgaard S.
        • Sorensen T.S.
        • Poulsen P.R.
        Three-dimensional liver motion tracking using real-time two-dimensional MRI.
        Med Phys. 2014; 41: 42302https://doi.org/10.1118/1.4867859
        • Paganelli C.
        • Seregni M.
        • Fattori G.
        • Summers P.
        • Bellomi M.
        • Baroni G.
        • et al.
        Magnetic resonance imaging-guided versus surrogate-based motion tracking in liver radiation therapy: a prospective comparative study.
        Int J Radiat Oncol Biol Phys. 2015; 91: 840-848https://doi.org/10.1016/j.ijrobp.2014.12.013
        • Paganelli C.
        • Lee D.
        • Greer P.B.
        • Baroni G.
        • Riboldi M.
        • Keall P.
        Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine MRI images.
        Phys Med Biol. 2015; 60: 7165-7178https://doi.org/10.1088/0031-9155/60/18/7165
        • Zachiu C.
        • Papadakis N.
        • Ries M.
        • Moonen C.
        • Denis,
        de An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs.
        Phys Med Biol. 2015; 60: 9003-9029https://doi.org/10.1088/0031-9155/60/23/9003
        • Akino Y.
        • Oh R.-J.
        • Masai N.
        • Shiomi H.
        • Inoue T.
        Evaluation of potential internal target volume of liver tumors using cine-MRI.
        Med Phys. 2014; 41111704https://doi.org/10.1118/1.4896821
        • Seregni M.
        • Paganelli C.
        • Summers P.
        • Bellomi M.
        • Baroni G.
        • Riboldi M.
        A hybrid image registration and matching framework for real-time motion tracking in MRI-guided radiotherapy.
        IEEE Trans Biomed Eng. 2018; 65: 131-139https://doi.org/10.1109/TBME.2017.2696361
        • Park S.
        • Farah R.
        • Shea S.M.
        • Tryggestad E.
        • Hales R.
        • Lee J.
        Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning.
        Phys Med Biol. 2018; 63: 25015https://doi.org/10.1088/1361-6560/aaa20b
        • Thomas D.H.
        • Santhanam A.
        • Kishan A.U.
        • Cao M.
        • Lamb J.
        • Min Y.
        • et al.
        Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT.
        Br J Radiol. 2018; 91: 20170522https://doi.org/10.1259/bjr.20170522
        • Vitolo V.
        • Cobianchi L.
        • Brugnatelli S.
        • Barcellini A.
        • Peloso A.
        • Facoetti A.
        • et al.
        Preoperative chemotherapy and carbon ions therapy for treatment of resectable and borderline resectable pancreatic adenocarcinoma: a prospective, phase II, multicentre, single-arm study.
        BMC Cancer. 2019; 19: 1-7https://doi.org/10.1186/s12885-019-6108-0
        • Seregni M.
        • Paganelli C.
        • Lee D.
        • Greer P.B.
        • Baroni G.
        • Keall P.J.
        • et al.
        Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI.
        Phys Med Biol. 2016; 61: 872-887https://doi.org/10.1088/0031-9155/61/2/872
        • Zachiu C.
        • Denis de Senneville B.
        • Moonen C.
        • Ries M.
        A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: proof of concept.
        Med Phys. 2015; 42: 4137-4148https://doi.org/10.1118/1.4922403
      2. plastimatch n.d. http://plastimatch.org/doxygen/classHausdorff__distance.html Accessed July 4, 2019.

        • Meschini G.
        • Seregni M.
        • Molinelli S.
        • Vai A.
        • Phillips J.
        • Sharp G.C.
        • et al.
        Validation of a model for physical dose variations in irregularly moving targets treated with carbon ion beams.
        Med Phys. 2019; 46: 3663-3673https://doi.org/10.1002/mp.13662
        • Garau N.
        • Via R.
        • Meschini G.
        • Lee D.
        • Keall P.
        • Riboldi M.
        • et al.
        A ROI-based global motion model established on 4DCT and 2D cine-MRI data for MRI-guidance in radiation therapy.
        Phys Med Biol. 2019; 64: 45002https://doi.org/10.1088/1361-6560/aafcec
        • Paganelli C.
        • Lee D.
        • Kipritidis J.
        • Whelan B.
        • Greer P.B.
        • Baroni G.
        • et al.
        Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.
        J Med Imaging Radiat Oncol. 2018; 62: 389-400https://doi.org/10.1111/1754-9485.12713
        • Fontana G.
        • Riboldi M.
        • Gianoli C.
        • Chirvase C.I.
        • Villa G.
        • Paganelli C.
        • et al.
        MRI quantification of pancreas motion as a function of patient setup for particle therapy —a preliminary study.
        J Appl Clin Med Phys. 2016; 17: 60-75https://doi.org/10.1120/jacmp.v17i5.6236
        • Paganelli C.
        • Summers P.
        • Bellomi M.
        • Baroni G.
        • Riboldi M.
        Liver 4DMRI: a retrospective image-based sorting method.
        Med Phys. 2015; 42: 4814-4821https://doi.org/10.1118/1.4927252
        • Paganelli C.
        • Kipritidis J.
        • Lee D.
        • Baroni G.
        • Keall P.
        • Riboldi M.
        Image-based retrospective 4D MRI in external beam radiotherapy: a comparative study with a digital phantom.
        Med Phys. 2018; 45: 3161-3172https://doi.org/10.1002/mp.12965
        • Meschini G.
        • Paganelli C.
        • Gianoli C.
        • Summers P.
        • Bellomi M.
        • Baroni G.
        • et al.
        A clustering approach to 4D MRI retrospective sorting for the investigation of different surrogates.
        Phys Med. 2019; 58: 107-113https://doi.org/10.1016/j.ejmp.2019.02.003