Highlights
- •2DcineMRI estimates tumour motion in carbon ion therapy of abdominal site.
- •The estimated motion from cineMRI and 4DCT are significant different.
- •Tumor margins built on cineMRI were compared to the clinical margin.
- •The clinical margin was not significant different from the cineMRI one for gating.
- •Gating treatment is robust to inter-fraction and intra-fraction motion.
Abstract
Purpose
Methods
Results
Conclusions
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Physica Medica: European Journal of Medical PhysicsReferences
Wang Z, Wang W-W, Shahnazi K, Jiang G-L. Carbon Ion Radiation Therapy for Liver Tumors. In: Lee NY, Leeman JE, Cahlon O, Sine K, Jiang G, Lu JJ, et al., editors. Target Vol. Delin. Treat. Plan. Part. Ther. A Pract. Guid., Cham: Springer International Publishing; 2018, p. 221–34. DOI:10.1007/978-3-319-42478-1_14.
- Short-course carbon-ion radiotherapy for hepatocellular carcinoma: a multi-institutional retrospective study.Liver Int. 2018; 38: 2239-2247https://doi.org/10.1111/liv.13969
- Carbon ion radiation therapy with concurrent gemcitabine for patients with locally advanced pancreatic cancer.Int J Radiat Oncol Biol Phys. 2016; 95: 498-504https://doi.org/10.1016/j.ijrobp.2015.12.362
- Multi-institutional study of carbon-ion radiotherapy for locally advanced pancreatic cancer: Japan carbon-ion radiation oncology study group (J-CROS) study 1403 pancreas.Int J Radiat Oncol Biol Phys. 2018; 101: 1212-1221https://doi.org/10.1016/j.ijrobp.2018.04.057
- Charged-particle therapy in cancer: clinical uses and future perspectives.Nat Rev Clin Oncol. 2017; 14: 483-495https://doi.org/10.1038/nrclinonc.2017.30
- The management of respiratory motion in radiation oncology report of AAPM Task Group 76.Med Phys. 2006; 33: 3874-3900https://doi.org/10.1118/1.2349696
- Target volume dose considerations in proton beam treatment planning for lung tumors.Med Phys. 2005; 32: 3549-3557https://doi.org/10.1118/1.2126187
- IGRT and motion management during lung SBRT delivery.Phys Med. 2017; 44: 113-122https://doi.org/10.1016/j.ejmp.2017.06.006
- Consensus guidelines for implementing pencil-beam scanning proton therapy for thoracic malignancies on behalf of the PTCOG thoracic and lymphoma subcommittee.Int J Radiat Oncol Biol Phys. 2017; 99: 41-50https://doi.org/10.1016/j.ijrobp.2017.05.014
- Real-time tumour tracking in particle therapy: technological developments and future perspectives.Lancet Oncol. 2012; 13: e383-e391https://doi.org/10.1016/S1470-2045(12)70243-7
- Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation.Br J Radiol. 2016; 89: 20150275https://doi.org/10.1259/bjr.20150275
- Acquiring a four-dimensional computed tomography dataset using an external respiratory signal.Phys Med Biol. 2003; 48: 45-62
- The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.Radiother Oncol. 2018; 126: 339-346https://doi.org/10.1016/j.radonc.2017.09.001
- Respiratory gated irradiation system for heavy-ion radiotherapy.Int J Radiat Oncol Biol Phys. 2000; 47: 1097-1103
- Internal target volume margins for liver tumours treated with gated scanned carbon-ion radiotherapy.Biomed Phys Eng Express. 2017; 3: 15029https://doi.org/10.1088/2057-1976/aa5988
- Inference of hysteretic respiratory tumor motion from external surrogates: a state augmentation approach.Phys Med Biol. 2008; 53: 2923-2936https://doi.org/10.1088/0031-9155/53/11/011
- Evaluation of residual abdominal tumour motion in carbon ion gated treatments through respiratory motion modelling.Phys Medica. 2017; 34: 28-37https://doi.org/10.1016/j.ejmp.2017.01.009
- MRI-guidance for motion management in external beam radiotherapy: current status and future challenges.Phys Med Biol. 2018; 63: aaebcfhttps://doi.org/10.1088/1361-6560/aaebcf
- Magnetic resonance imaging and computed tomography of respiratory mechanics.J Magn Reson Imaging. 2010; 32: 1388-1397https://doi.org/10.1002/jmri.22386
- MRI-guided lung SBRT: present and future developments.Phys Med. 2017; 44: 139-149https://doi.org/10.1016/j.ejmp.2017.02.003
- Three-dimensional liver motion tracking using real-time two-dimensional MRI.Med Phys. 2014; 41: 42302https://doi.org/10.1118/1.4867859
- Magnetic resonance imaging-guided versus surrogate-based motion tracking in liver radiation therapy: a prospective comparative study.Int J Radiat Oncol Biol Phys. 2015; 91: 840-848https://doi.org/10.1016/j.ijrobp.2014.12.013
- Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine MRI images.Phys Med Biol. 2015; 60: 7165-7178https://doi.org/10.1088/0031-9155/60/18/7165
- de An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs.Phys Med Biol. 2015; 60: 9003-9029https://doi.org/10.1088/0031-9155/60/23/9003
- Evaluation of potential internal target volume of liver tumors using cine-MRI.Med Phys. 2014; 41111704https://doi.org/10.1118/1.4896821
- A hybrid image registration and matching framework for real-time motion tracking in MRI-guided radiotherapy.IEEE Trans Biomed Eng. 2018; 65: 131-139https://doi.org/10.1109/TBME.2017.2696361
- Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning.Phys Med Biol. 2018; 63: 25015https://doi.org/10.1088/1361-6560/aaa20b
- Initial clinical observations of intra- and interfractional motion variation in MR-guided lung SBRT.Br J Radiol. 2018; 91: 20170522https://doi.org/10.1259/bjr.20170522
- Preoperative chemotherapy and carbon ions therapy for treatment of resectable and borderline resectable pancreatic adenocarcinoma: a prospective, phase II, multicentre, single-arm study.BMC Cancer. 2019; 19: 1-7https://doi.org/10.1186/s12885-019-6108-0
- Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI.Phys Med Biol. 2016; 61: 872-887https://doi.org/10.1088/0031-9155/61/2/872
- A framework for the correction of slow physiological drifts during MR-guided HIFU therapies: proof of concept.Med Phys. 2015; 42: 4137-4148https://doi.org/10.1118/1.4922403
plastimatch n.d. http://plastimatch.org/doxygen/classHausdorff__distance.html Accessed July 4, 2019.
- Validation of a model for physical dose variations in irregularly moving targets treated with carbon ion beams.Med Phys. 2019; 46: 3663-3673https://doi.org/10.1002/mp.13662
- A ROI-based global motion model established on 4DCT and 2D cine-MRI data for MRI-guidance in radiation therapy.Phys Med Biol. 2019; 64: 45002https://doi.org/10.1088/1361-6560/aafcec
- Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.J Med Imaging Radiat Oncol. 2018; 62: 389-400https://doi.org/10.1111/1754-9485.12713
- MRI quantification of pancreas motion as a function of patient setup for particle therapy —a preliminary study.J Appl Clin Med Phys. 2016; 17: 60-75https://doi.org/10.1120/jacmp.v17i5.6236
- Liver 4DMRI: a retrospective image-based sorting method.Med Phys. 2015; 42: 4814-4821https://doi.org/10.1118/1.4927252
- Image-based retrospective 4D MRI in external beam radiotherapy: a comparative study with a digital phantom.Med Phys. 2018; 45: 3161-3172https://doi.org/10.1002/mp.12965
- A clustering approach to 4D MRI retrospective sorting for the investigation of different surrogates.Phys Med. 2019; 58: 107-113https://doi.org/10.1016/j.ejmp.2019.02.003