Advertisement
Original paper| Volume 75, P58-68, July 2020

Dosimetric effect of intrafraction motion and different localization strategies in prostate SBRT

  • A. Vanhanen
    Correspondence
    Corresponding author.
    Affiliations
    Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, POB-2000, 33521 Tampere, Finland

    Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, POB-2000, 33521 Tampere, Finland
    Search for articles by this author
  • P. Poulsen
    Affiliations
    Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Palle Juul-Jensens Boulevard 25, Entrance B3, 8200 Aarhus N, Denmark
    Search for articles by this author
  • M. Kapanen
    Affiliations
    Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, POB-2000, 33521 Tampere, Finland

    Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, POB-2000, 33521 Tampere, Finland
    Search for articles by this author

      Highlights

      • CBCT-guided pre-treatment localization strategy may lead to inaccurate treatment delivery.
      • Additional pre-treatment position correction increases the accuracy of treatment delivery.
      • Continuous motion monitoring ensures correct target coverage and minimizes OAR doses for every fraction.

      Abstract

      The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was –0.3 ± 0.4%, −0.4 ± 0.6% and –0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were −29.0% and –7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vogelius I.R.
        • Bentzen S.M.
        Dose response and fractionation sensitivity of prostate cancer after external beam radiation therapy: a meta-analysis of randomized trials.
        Int J Radiat Oncol Biol Phys. 2018; 100: 858-865
        • Dasu A.
        • Toma-Dasu I.
        Prostate alpha/beta revisited - an analysis of clinical results from 14 168 patients.
        Acta Oncol. 2012; 51: 963-974
        • Kishan A.U.
        • Dang A.
        • Katz A.J.
        • Mantz C.A.
        • Collins S.P.
        • Aghdam N.
        • et al.
        Long-term outcomes of stereotactic body radiotherapy for low-risk and intermediate-risk prostate cancer.
        JAMA Netw Open. 2019; 2e188006
        • Widmark A.
        • Gunnlaugsson A.
        • Beckman K.
        • Thellenberg-Karlsson C.
        • Hoyer M.
        • Lagerlund M.
        • et al.
        Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomized, non-inferiority, phase 3 trial.
        Lancet. 2019; 394: 385-395
        • Vanhanen A.
        • Syrén H.
        • Kapanen M.
        Localization accuracy of two electromagnetic tracking systems in prostate cancer radiotherapy: a comparison with fiducial marker based kilovoltage imaging.
        Phys Med. 2018; 56: 10-18
        • O’Neill A.G.
        • Jain S.
        • Hounsell A.R.
        • O’Sullivan J.M.
        Fiducial marker guided prostate radiotherapy: a review.
        Br J Radiol. 2016; 89: 20160296
        • Adamson J.
        • Wu Q.
        • Yan D.
        Dosimetric effect of intrafraction motion and residual setup error for hypofractionated prostate intensity-modulated radiotherapy with online cone beam computed tomography image guidance.
        Int J Radiat Oncol Biol Phys. 2011; 80: 453-461
      1. Mate TP, Krag D, Wright JN, Dimmer S. A new system to perform continuous target tracking for radiation and surgery using non-ionizing alternating current electromagnetics. Int J Comput Assisted Radiol Surg 2004;1268:425–30. (CARS 2004—Proc. of the 18th Int. Congress and Exhibition (Chicago, USA, 23–26 June 2004)).

        • Balter J.M.
        • Wright J.N.
        • Newell L.J.
        • Friemel B.
        • Dimmer S.
        • Cheng Y.
        • et al.
        Accuracy of a wireless localization system for radiotherapy.
        Int J Radiat Oncol Biol Phys. 2005; 61: 933-937
        • Kindblom J.
        • Ekelund-Olvenmark A.
        • Syren H.
        • Iustin R.
        • Braide K.
        • Frank-Lissbrant I.
        • et al.
        High precision transponder localization using a novel electromagnetic positioning system in patients with localized prostate cancer.
        Radiother Oncol. 2009; 90: 307-311
        • Vanhanen A.
        • Kapanen M.
        The effect of rectal retractor on intrafraction motion of the prostate.
        Biomed Phys Eng Express. 2016; 2035021
        • Lujan A.E.
        • Larsen E.W.
        • Balter J.M.
        • Ten Haken R.K.
        A method for incorporating organ motion due to breathing into 3D dose calculations.
        Med Phys. 1999; 26: 715-720
        • Craig T.
        • Battista J.
        • Van Dyk J.
        Limitations of a convolution method for modeling geometric uncertainties in radiation therapy. I. The effect of shift invariance.
        Med Phys. 2003; 30: 2001-2011
        • Li H.S.
        • Chetty I.J.
        • Enke C.A.
        • Foster R.D.
        • Willoughby T.R.
        • Kupelian P.A.
        • et al.
        Dosimetric consequences of intrafraction prostate motion.
        Int J Radiat Oncol Biol Phys. 2008; 71: 801-812
        • Li H.S.
        • Chetty I.J.
        • Solberg T.D.
        Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method.
        Med Phys. 2008; 35: 1703-1710
        • Bharat S.
        • Parikh P.
        • Noel C.
        • Meltsner M.
        • Bzdusek K.
        • Kaus M.
        Motion-compensated estimation of delivered dose during external beam radiation therapy: implementation in Philips’ Pinnacle3 treatment planning system.
        Med Phys. 2012; 39: 437-443
        • Chetty I.J.
        • Rosu M.
        • Tyagi N.
        • Marsh L.H.
        • McShan D.L.
        • Balter J.M.
        • et al.
        A fluence convolution method to account for respiratory motion in three-dimensional dose calculations in liver: a Monte Carlo study.
        Med Phys. 2003; 30: 1776-1780
        • Aristophanous M.
        • Rottmann J.
        • Court L.E.
        • Berbeco R.I.
        EPID-guided 3D dose verification of lung SBRT.
        Med Phys. 2011; 38: 495-503
        • Waghorn B.J.
        • Shah A.P.
        • Ngwa W.
        • Meeks S.L.
        • Moore J.A.
        • Siebers J.V.
        • et al.
        A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans.
        Phys Med Biol. 2010; 55: 4187-4202
        • Langen K.M.
        • Chauhan B.
        • Siebers J.V.
        • Moore J.
        • Kupelian P.A.
        The dosimetric effect of intrafraction prostate motion on step-and-shoot intensity-modulated radiation therapy plans: magnitude, correlation with motion parameters, and comparison with helical tomotherapy plans.
        Int J Radiat Oncol Biol Phys. 2011; 84: 1220-1225
        • Litzenberg D.W.
        • Hadley S.W.
        • Tyagi N.
        • Balter J.M.
        • Ten Haken R.K.
        • Chetty I.J.
        Synchronized dynamic dose reconstruction.
        Med Phys. 2007; 34: 91-102
        • Poulsen P.R.
        • Schmidt M.L.
        • Keall P.
        • Worm E.S.
        • Fledelius W.
        • Hoffman L.
        A method of dose reconstruction for moving targets compatible with dynamic treatments.
        Med Phys. 2012; 39: 6237-6246
        • Azcona J.D.
        • Xing L.
        • Chen X.
        • Bush K.
        • Li R.
        Assessing the dosimetric impact of real-time prostate motion during volumetric modulated arc therapy.
        Int J Radiat Oncol Biol Phys. 2013; 88: 1167-1174
        • Berbeco R.I.
        • Hacker F.
        • Zatwarnicki C.
        • Park S.
        • Ionascu D.
        • O’Farrel D.
        • et al.
        A novel method for estimating SBRT delivered dose with beam’s-eye-view images.
        Med Phys. 2008; 35: 3225-3231
        • Ravkilde T.
        • Keall P.J.
        • Grau C.
        • Høyer M.
        • Poulsen P.R.
        Time-resolved dose reconstruction by motion encoding of volumetric modulated arc therapy fields delivered with and without dynamic multi-leaf collimator tracking.
        Acta Oncol. 2013; 52: 1497-1503
        • Lin M.
        • Li J.
        • Wang L.
        • Koren S.
        • Fan J.
        • Forkal E.
        • et al.
        4D patient dose reconstruction using online measured EPID cine images for lung SBRT treatment validation.
        Med Phys. 2012; 39: 5949-5958
        • Stambaugh C.
        • Nelms B.E.
        • Dilling T.
        • Stevens C.
        • Latifi K.
        • Zhang G.
        • et al.
        Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments.
        Med Phys. 2013; 40091710
        • Schmidt M.L.
        • Hoffman L.
        • Kandi M.
        • Møller D.S.
        • Poulsen P.R.
        Dosimetric impact of respiratory motion, interfraction baseline shifts, and anatomical changes in radiotherapy of non-small cell lung cancer.
        Acta Oncol. 2013; 52: 1490-1496
        • Cai W.
        • Dhou S.
        • Cifter F.
        • Myronakis M.
        • Hurwitz M.H.
        • Williams C.L.
        • et al.
        4D cone beam CT-based dose assessment for SBRT lung cancer treatment.
        Phys Med Biol. 2016; 61: 554-568
        • Poulsen P.R.
        • Worm E.S.
        • Petersen J.B.B.
        • Grau C.
        • Fledelius W.
        • Høyer M.
        Kilovoltage intrafraction motion monitoring and target dose reconstruction for stereotactic volumetric modulated arc therapy of tumors in the liver.
        Radiother Oncol. 2014; 111: 424-430
        • Poulsen P.R.
        • Worm E.S.
        • Hansen R.
        • Larsen L.P.
        • Grau C.
        • Høyer M.
        Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: first results.
        Acta Oncol. 2015; 54: 1445-1452
        • Worm E.S.
        • Høyer M.
        • Hansen R.
        • Larsen L.P.
        • Weber B.
        • Grau C.
        • et al.
        A prospective cohort study of gated stereotactic liver radiation therapy using continuous internal electromagnetic motion monitoring.
        Int J Radiat Oncol Biol Phys. 2018; 102: 366-375
        • Kurosu K.
        • Sumida I.
        • Suzuki O.
        • Shiomi H.
        • Ota S.
        • Otani K.
        • et al.
        Dosimetric and clinical effects of interfraction and intrafraction correlation errors during marker-based real-time tumor tracking for liver SBRT.
        J Radiat Res. 2018; 59: 164-172
        • Colvill E.
        • Poulsen P.R.
        • Booth J.T.
        • O’Brien R.T.
        • Ng J.A.
        • Keall P.J.
        DMLC tracking and gating can improve dose coverage for prostate VMAT.
        Med Phys. 2014; 41091705
        • Lovelock M.D.
        • Messineo A.P.
        • Cox B.W.
        • Kollmeier M.A.
        • Zelefsky M.J.
        Continuous monitoring and intrafraction target position correction during treatment improves target coverage for patients undergoing SBRT prostate therapy.
        Int J Radiat Oncol Biol Phys. 2015; 91: 588-594
        • Juneja P.
        • Colvill E.
        • Kneebone A.
        • Eade T.
        • Ng J.A.
        • Thwaites D.I.
        • et al.
        Quantification of intrafraction prostate motion and its dosimetric effect on VMAT.
        Australas Phys Eng Sci Med. 2017; 40: 317-324
        • van de Water S.
        • Valli L.
        • Aluwini S.
        • Lanconelli N.
        • Heijmen B.
        • Hoogeman M.
        Intrafraction prostate translations and rotations during hypofractionated robotic radiation surgery: dosimetric impact of correction strategies and margins.
        Int J Radiat Oncol Biol Phys. 2014; 88: 1154-1160
        • Franz A.M.
        • Schmitt D.
        • Seitel A.
        • Chatrasingh M.
        • Echner G.
        • Oelfke U.
        • et al.
        Standardized accuracy assessment of the calypso wireless transponder tracking system.
        Phys Med Biol. 2014; 59: 6797-6810
        • Tamponi M.
        • Gabriele D.
        • Maggio A.
        • Stasi M.
        • Meloni G.B.
        • Conti M.
        • et al.
        Prostate cancer dose-response, fractionation sensitivity and repopulation parameters evaluation from 25 international radiotherapy outcome data sets.
        Br J Radiol. 2019; 92: 20180823
        • Scobioala S.
        • Kittel C.
        • Elsayad K.
        • Kroeger K.
        • Oertel M.
        • Samhouri L.
        • et al.
        A treatment planning study comparing IMRT techniques and cyber knife for stereotactic body radiotherapy of low-risk prostate carcinoma.
        Radiat Oncol. 2019; 14: 143
        • Muurholm C.G.
        • Ravkilde T.
        • Skouboe S.
        • Eade T.
        • Nguyen D.T.
        • Booth J.
        • et al.
        Dose reconstruction including dynamic six-degree of freedom motion during prostate radiotherapy.
        J Phys: Conf Ser. 2019; 1305012053
        • Wang K.
        • Chen R.C.
        • Kane B.L.
        • Medbery C.A.
        • Underhill K.J.
        • Gray J.R.
        • et al.
        Patient and dosimetric predictors of genitourinary and bowel quality of life after prostate SBRT: secondary analysis of a multi-institutional trial.
        Int J Radiat Oncol Biol Phys. 2018; 102: 1430-1437
        • Repka M.C.
        • Kole T.P.
        • Lee J.
        • Wu B.
        • Lei S.
        • Yung T.
        • et al.
        Predictors of acute urinary symptom flare following stereotactic body radiation therapy (SBRT) in the definitive treatment of localized prostate cancer.
        Acta Oncol. 2017; 56: 1136-1138
        • Karsh L.I.
        • Gross E.T.
        • Pieczonka C.M.
        • Aliotta P.J.
        • Skomra C.J.
        • Ponsky L.E.
        • et al.
        Absorbable hydrogel spacer use in prostate radiotherapy: a comprehensive review of phase 3 clinical trial published data.
        Urology. 2017; 115: 39-44
        • Whalley D.
        • Hruby G.
        • Alfieri F.
        • Kneebone A.
        • Eade T.
        SpaceOAR hydrogel in dose-escalated prostate cancer radiotherapy: rectal dosimetry and late toxicity.
        Clin Oncol. 2016; 28: e148-e154
        • Hwang M.E.
        • Mayeda M.
        • Liz M.
        • Goode-Marshall B.
        • Gonzalez L.
        • Elliston C.D.
        • et al.
        Stereotactic body radiotherapy with periprostatic hydrogel spacer for localized prostate cancer: toxicity profile and early oncologic outcomes.
        Radiat Oncol. 2019; 14: 136
        • Zhang P.
        • Mah D.
        • Happersett L.
        • Cox B.
        • Hunt M.
        • Mageras G.
        Determination of action thresholds for electromagnetic tracking system-guided hypofractionated prostate radiotherapy using volumetric arc therapy.
        Med Phys. 2011; 38: 4001-4008
        • Choi H.S.
        • Kang K.M.
        • Jeong B.K.
        • Song J.H.
        • Lee Y.H.
        • Ha I.B.
        • et al.
        Analysis of motion-dependent clinical outcome of tumor tracking stereotactic body radiotherapy for prostate cancer.
        J Korean Med Sci. 2018; 33e107
        • Kupelian P.
        • Willoughby T.
        • Mahadevan A.
        • Djemil T.
        • Weinstein G.
        • Jani S.
        • et al.
        Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy.
        Int J Radiat Oncol Biol Phys. 2007; 67: 1088-1098
        • Tong X.
        • Chen X.
        • Li J.
        • Xu Q.
        • Lin M.
        • Chen L.
        • et al.
        Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system.
        J Appl Clin Med Phys. 2015; 16: 51-61
        • Li J.S.
        • Lin M.
        • Buyyounouski M.K.
        • Horwitz E.M.
        • Ma C.
        Reduction of prostate intrafractional motion from shortening the treatment time.
        Phys Med Biol. 2013; 58: 4921-4932
        • Lin Y.
        • Liu T.
        • Yang W.
        • Yang X.
        • Khan M.K.
        The non-Gaussian nature of prostate motion based on real-time intrafraction tracking.
        Int J Radiat Oncol Biol Phys. 2013; 87: 363-369
        • Litzenberg D.W.
        • Balter J.M.
        • Hadley S.W.
        • Sandler H.M.
        • Willoughby T.R.
        • Kupelian P.A.
        • et al.
        Influence of intrafraction motion on margins for prostate radiotherapy.
        Int J Radiat Oncol Biol Phys. 2006; 65: 548-553
        • Bell L.J.
        • Eade T.
        • Kneebone A.
        • Hruby G.
        • Alfieri F.
        • Bromley R.
        • et al.
        Initial experience with intra-fraction motion monitoring using Calypso guided volumetric modulated arc therapy for definitive prostate cancer treatment.
        J Med Radiat Sci. 2017; 64: 25-34
        • Gunnlaugsson A.
        • Kjellén E.
        • Hagberg O.
        • Thellenberg-Karlsson C.
        • Widmark A.
        • Nilsson P.
        Change in prostate volume during extreme hypo-fractionation analysed with MRI.
        Radiat Oncol. 2014; 9: 22
        • Ghilezan M.J.
        • Jaffray D.A.
        • Siewerdsen J.H.
        • van Herk M.
        • Shetty A.
        • Sharpe M.B.
        • et al.
        Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI).
        Int J Radiat Oncol Biol Phys. 2005; 62: 406-417
        • Pathmanathan A.U.
        • van As N.J.
        • Kerkmeijer L.G.W.
        • Christodouleas J.
        • Lawton C.A.F.
        • Vesprini D.
        • et al.
        Magnetic resonance imaging-guided adaptive radiation therapy: a “game changer” for prostate treatment?.
        Int J Radiat Oncol Biol Phys. 2018; 100: 361-373
        • Tetar S.U.
        • Bruynzeel A.M.E.
        • Lagerwaard F.J.
        • Slotman B.J.
        • Bohoudi O.
        • Palacios M.A.
        Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer.
        Phys Imaging Radiat Oncol. 2019; 9: 69-76
        • Menten M.J.
        • Mohajer J.K.
        • Nilawar R.
        • Bertholet J.
        • Dunlop A.
        • Pathmanathan A.U.
        • et al.
        Automatic reconstruction of the delivered dose of the day using MR-linac treatment log files and online MR imaging.
        Radiother Oncol. 2020; 145: 88-94
        • Kamerling C.P.
        • Fast M.F.
        • Ziegenhein P.
        • Menten M.J.
        • Nill S.
        • Oelfke U.
        Real-time 4D dose reconstruction for tracked dynamic MLC deliveries for lung SBRT.
        Med Phys. 2016; 43: 6072-6081
        • Kamerling C.P.
        • Fast M.F.
        • Ziegenheim P.
        • Menten M.J.
        • Nill S.
        • Oelfke U.
        Online dose reconstruction for tracked volumetric arc therapy: real-time implementation and offline quality assurance for prostate SBRT.
        Med Phys. 2017; 44: 5997-6007
        • Skouboe S.
        • Ravkilde T.
        • Bertholet J.
        • Hansen R.
        • Worm E.S.
        • Muurholm C.G.
        • et al.
        First clinical real-time motion-including tumor dose reconstruction during radiotherapy delivery.
        Radiother Oncol. 2019; 139: 66-71
        • Skouboe S.
        • Poulsen P.R.
        • Muurholm C.G.
        • Worm E.
        • Hansen R.
        • Høyer M.
        • et al.
        Simulated real-time dose reconstruction for moving tumors in stereotactic liver radiotherapy.
        Med Phys. 2019; 46: 4738-4748
        • Wolf J.
        • Nicholls J.
        • Hunter P.
        • Nguyen D.T.
        • Keall P.
        • Martin J.
        Dosimetric impact of intrafraction rotations in stereotactic prostate radiotherapy: a subset analysis of the TROG 15.01 SPARK trial.
        Radiother Oncol. 2019; 136: 143-147