Advertisement
Original paper| Volume 77, P194-203, September 2020

Download started.

Ok

An on-lattice agent-based Monte Carlo model simulating the growth kinetics of multicellular tumor spheroids

  • S. Ruiz-Arrebola
    Affiliations
    Servicio de Oncología Radioterápica, Hospital Universitario Marqués de Valdecilla, E-39008 Santander, Spain
    Search for articles by this author
  • A.M. Tornero-López
    Affiliations
    Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Dr. Negrín, E-35010 Gran Canaria, Spain
    Search for articles by this author
  • D. Guirado
    Affiliations
    Unidad de Radiofísica, Hospital Universitario San Cecilio, E-18016 Granada, Spain

    Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, E-18016 Granada, Spain
    Search for articles by this author
  • M. Villalobos
    Affiliations
    Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, E-18016 Granada, Spain

    Departamento de Radiología y Medicina Física, Universidad de Granada, E-18071 Granada, Spain

    Instituto de Biopatología y Medicina Regenerativa (IBIMER), Universidad de Granada, E-18071 Granada, Spain
    Search for articles by this author
  • A.M. Lallena
    Correspondence
    Corresponding author at: Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain.
    Affiliations
    Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain

    Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, E-18016 Granada, Spain
    Search for articles by this author
Published:September 01, 2020DOI:https://doi.org/10.1016/j.ejmp.2020.07.026

      Abstract

      Purpose

      To develop an on-lattice agent-based model describing the growth of multicellular tumor spheroids using simple Monte Carlo tools.

      Methods

      Cells are situated on the vertices of a cubic grid. Different cell states (proliferative, hypoxic or dead) and cell evolution rules, driven by 10 parameters, and the effects of the culture medium are included. About twenty spheroids of MCF-7 human breast cancer were cultivated and the experimental data were used for tuning the model parameters.

      Results

      Simulated spheroids showed adequate sizes of the necrotic nuclei and of the hypoxic and proliferative cell phases as a function of the growth time, mimicking the overall characteristics of the experimental spheroids. The relation between the radii of the necrotic nucleus and the whole spheroid obtained in the simulations was similar to the experimental one and the number of cells, as a function of the spheroid volume, was well reproduced. The statistical variability of the Monte Carlo model described the whole volume range observed for the experimental spheroids. Assuming that the model parameters vary within Gaussian distributions it was obtained a sample of spheroids that reproduced much better the experimental findings.

      Conclusions

      The model developed allows describing the growth of in vitro multicellular spheroids and the experimental variability can be well reproduced. Its flexibility permits to vary both the agents involved and the rules that govern the spheroid growth. More general situations, such as, e. g., tumor vascularization, radiotherapy effects on solid tumors, or the validity of the tumor growth mathematical models can be studied.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sutherland R.M.
        Cell and environment interactions in tumor microregions: the multicell spheroid model.
        Science. 1988; 240: 177-184
        • Cui X.
        • Hartanto Y.
        • Zhang H.
        Advances in multicellular spheroids formation.
        J R Soc Interface. 2017; 14: 20160877
        • Mueller-Klieser W.
        Three-dimensional cell cultures: from molecular mechanisms to clinical applications.
        Am J Physiol. 1997; 273: C1109-C1123
        • Mueller-Klieser W.
        Tumor biology and experimental therapeutics.
        Crit Rev Oncol Hematol. 2000; 36: 123-139
        • Bates R.C.
        • Edwards N.S.
        • Yates J.D.
        Spheroids and cell survival.
        Critical Rev Oncol Hematol. 2000; 36: 61-74
        • Kunz-Schughart L.A.
        • Freyer J.P.
        • Hofstaedter F.
        • Ebner R.
        The use of 3-D cultures for high-throughput screening: the multicellular spheroid model.
        J Biomol Screen. 2004; 9: 273-285
        • Conger A.D.
        • Ziskin M.C.
        Growth of mammalian multicellular tumor spheroids.
        Cancer Res. 1983; 43: 556-560
        • Mueller-Klieser W.
        • Freyer J.P.
        • Sutherland R.M.
        Influence of glucose and oxygen supply conditions on the oxygenation of multicellular spheroids.
        Br J Cancer. 1986; 53: 345-353
        • Michel T.
        • Fehrenbach J.
        • Lobjois V.
        • Laurent J.
        • Gomes A.
        • Colin T.
        • Poignard C.
        Mathematical modeling of the proliferation gradient in multicellular tumor spheroids.
        J Theor Biol. 2018; 458: 133-147
        • Casciari J.J.
        • Sotirchos S.V.
        • Sutherland R.M.
        Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids.
        Cell Prolif. 1992; 25: 1-22
        • Freyer J.P.
        • Sutherland R.M.
        Selective dissociation and characterization of cells from different regions of multicell tumor spheroids.
        Cancer Res. 1980; 40: 3956-3965
        • Mueller-Klieser W.
        Multicellular spheroids: a review on cellular aggregates in cancer research.
        J Cancer Res Clin Oncol. 1987; 113: 101-122
        • Olive P.L.
        • Durand R.E.
        Drug and radiation resistance in spheroids: cell contact and kinetics.
        Cancer Metastasis Rev. 1994; 13: 121-138
        • Stuschke M.
        • Budach V.
        • Stüben G.
        • Streffer C.
        • Sack H.
        Heterogeneity in the fractionation sensitivities of human tumor cell lines: studies in a three-dimensional model system.
        Int J Radiat Oncol Biol Phys. 1995; 32: 395-408
        • Fritz P.
        • Weber K.J.
        • Frank C.
        • Flentje M.
        Differential effects of dose rate and superfractionation on survival and cell cycle of V79 cells from spheroid and monolayer culture.
        Radiother Oncol. 1996; 39: 73-79
        • Guirado D.
        • Aranda M.
        • Vilches M.
        • Villalobos M.
        • Lallena A.M.
        Dose dependence of the growth rate of multicellular tumour spheroids after irradiation.
        Br J Radiol. 2003; 76: 109-116
      1. Guirado D. Variabilidad en radiobiología. PhD Thesis. University of Granada (Spain) 2012.

        • Wang C.
        • Tang Z.
        • Zhao Y.
        • Yao R.
        • Li L.
        • Sun W.
        Three-dimensional in vitro cancer models: a short review.
        Biofabrication. 2014; 6022001
        • McMillan K.S.
        • McCluskey A.G.
        • Sorensen A.
        • Boyd M.
        • Zagnoni M.
        Emulsion technologies for multicellular tumour spheroid radiation assays.
        Analyst. 2016; 141: 100-110
        • Sosa Iglesias V.
        • Theys J.
        • Groot A.J.
        • Barbeau L.M.O.
        • Lemmens A.
        • Yaromina A.
        • Losen M.
        • Houben R.
        • Dubois L.
        • Vooijs M.
        Synergistic effects of NOTCH/γ-secretase inhibition and standard of care treatment modalities in non-small cell lung cancer cells.
        Frontiers Oncol. 2018; 8: 460
        • Song Y.
        • Kim J.-S.
        • Kim S.-H.
        • Park Y.K.
        • Yu E.
        • Kim K.-H.
        • Seo E.-J.
        • Oh H.-B.
        • Lee H.C.
        • Kim K.M.
        • Seo H.R.
        Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma.
        J Exper Clin Cancer Res. 2018; 37: 109
        • Verjans E.-T.
        • Doijen J.
        • Luyten W.
        • Landuyt B.
        • Schoofs L.
        Three-dimensional cell culture models for anticancer drug screening: Worth the effort?.
        J Cell Physiol. 2018; 233: 2993-3003
        • Guirado D.
        • Aranda M.
        • Ortiz M.
        • Mesa J.A.
        • Zamora L.I.
        • Amaya E.
        • Villalobos M.
        • Lallena A.M.
        Low-dose radiation hyper-radiosensitivity in multicellular tumour spheroids.
        Br J Radiol. 2012; 85: 1398-1406
      2. Aranda M. Los esferoides multicelulares como test predictivo de radiosensibilidad y radiocurabilidad tumoral. PhD Thesis. University of Granada (Spain) 2003.

        • Roose T.
        • Chapman S.J.
        • Maini P.K.
        Mathematical models of avascular tumor growth.
        SIAM Rev. 2007; 49: 179-208
        • Ward J.P.
        • King J.R.
        Mathematical modelling of avascular tumour growth.
        IMA J Math Appl Med Biol. 1997; 14: 39-69
        • Ferreira Jr, S.C.
        • Martins M.L.
        • Vilela M.J.
        Reaction-diffusion model for the growth of avascular tumor.
        Phys Rev E. 2002; 65021907
        • Chignola R.
        • Milotti E.
        Numerical simulation of tumor spheroid dynamics.
        Physica A. 2004; 338: 261-266
        • Jiang Y.
        • Pjesivac-Grbovic J.
        • Cantrell C.
        • Freyer J.P.
        A multiscale model for avascular tumor growth.
        Biophys J. 2005; 89: 3884-3894
        • Chignola R.
        • Del Fabbro A.
        • Farina M.
        • Militti E.
        Computational challenges of tumor spheroid.
        J Bioinform Comput Biol. 2010; 9: 559-577
        • Milotti E.
        • Chignola R.
        Emergent properties of tumor microenvironment in a real life model of multicell tumor spheroids.
        PLoS ONE. 2010; 5e13942
        • Bertuzzi A.
        • Bruni C.
        • Fasano A.
        • Gandolfi A.
        • Papa F.
        • Sinisgalli C.
        Response of tumor spheroids to radiation: modeling and parameter estimation.
        Bull Math Biol. 2010; 72: 1069-1091
        • Fernández S.D.
        • Suárez C.
        • Cecchi G.A.
        • Marshall G.
        • Stolovitzky G.
        When the optimal is not the best: Parameter estimation in complex biological models.
        PLoS ONE. 2010; 5e13283
        • Luján E.
        • Guerra L.N.
        • Soba A.
        • VosacovsKy N.
        • Gandía D.
        • Calvo J.C.
        • Suárez C.
        Mathematical modelling of microtumour infiltration based on in vitro experiments.
        Integr Biol. 2016; 8: 879-885
        • Luján E.
        • Soto D.
        • Rosito M.S.
        • Soba A.
        • Guerra L.N.
        • Calvo J.C.
        • Marshall G.
        • Suárez C.
        Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by in vitro studies.
        Integr Biol. 2018; 10: 325-334
        • Jackson P.R.
        • Juliano J.
        • Hawkins-Daarud A.
        • Rockne R.C.
        • Swanson K.R.
        Patient-specific mathematical neuro-oncology: Using a simple proliferation and invasion tumor model to inform clinical practice.
        Bull Math Biol. 2015; 77: 846-856
        • Suárez C.
        • Maglietti F.
        • Colonna M.
        • Breitburd K.
        • Marshall G.
        Mathematical modeling of human gioma growth based on brain topological structures: Study of two clinical cases.
        PLoS ONE. 2012; 7 (e39616)
      3. Metzcar J, Wang Y, MS1; Heiland R, Macklin P. A review of cell-based computational modeling in cancer biology. JCO Clin Cancer Inform 2019;3:1-13.

        • Von Neumann J.
        • Burks A.W.
        Theory of self-reproducing automata.
        Univ Illinois Press. 1966;
        • Toffoli T.
        • Margolus N.
        Cellular automata machines: a new environment for modeling.
        MIT Pressc, 1987
        • Materi W.
        • Wishart D.S.
        Computational systems biology in cancer: Modeling methods and applications.
        Gene Regul Syst Bio. 2007; 1: 91-110
      4. Schiff JL. Cellular Automata: A Discrete View of the World. Wiley & Sons Inc 2011.

        • Rejniak K.A.
        • Anderson A.R.A.
        Hybrid models of tumor growth.
        Wiley Interdiscip Rev Syst Biol Med. 2011; 3: 115-125
        • Wang Z.
        • Deisboeck T.S.
        Computational modeling of brain tumors: discrete, continuum or hybrid?.
        Sci Model Simul. 2008; 15: 381-393
        • Jeanquartier F.
        • Jean-Quartier C.
        • Jurisica I.
        • Holzinger A.
        In silico modeling for tumor growth visualization.
        BMC Syst Biol. 2016; 10: 59
        • Jean-Quartier C.
        • Jeanquartier F.
        • Cemernek D.
        • Holzinger A.
        In silico cancer research towards 3R.
        BMC Cancer. 2018; 18: 408
        • Emonet T.
        • Macal C.M.
        • North M.J.
        AgentCell: a digital single-cell assay for bacterial chemotaxis.
        Bioinformatics. 2005; 21: 2714-2721
        • Walker D.C.
        • Hill G.
        • Wood S.M.
        Agent-based computational modeling of wounded epithelial cell monolayers.
        IEEE Trans Nanobiosci. 2004; 3: 153-163
        • An G.
        In silico experiments of existing and hypothetical cytokinedirected clinical trials using agent-based modeling.
        Crit Care Med. 2004; 32: 2050-2060
        • Düchting W.
        • Vogelsaenger T.
        Three-dimensional pattern generation applied to spheroidal tumor growth in a nutrient medium.
        Int J Biomed Comput. 1981; 12: 377-392
        • Düchting W.
        • Vogelsaenger T.
        Aspects of modelling and simulating tumor growth and treatment.
        J Cancer Res Clin Oncol. 1983; 105: 1-12
        • Düchting W.
        • Vogelsaenger T.
        Recent progress in modelling and simulation of three-dimensional tumor growth and treatment.
        Bio Systems. 1985; 18: 79-91
        • Düchting W.
        Tumor growth simulation. Comput & Graphics. 1990; 14: 505-508
        • Düchting W.
        • Lehrig R.
        • Rademacher G.
        • Ulmer W.
        Computer simulation of clinical irradiation schemes applied to in vitro tumor spheroids.
        Strahlenther Onkol. 1989; 165: 873-878
        • Düchting W.
        • Ulmer W.
        • Ginsberg T.
        Cancer: A challenge for control theory and computer modelling.
        Eur J Cancer. 1996; 32A: 1283-1292
        • Düchting W.
        • Ginsberg T.
        Computer simulation applied to radiation therapy in cancer research.
        Appl Math Comput. 1996; 74: 191-207
        • Enderling H.
        • Hlatky L.
        • Hahnfeldt
        Migration rules: tumours are conglomerates of self-metastases.
        Br J Cancer. 2009; 100: 1917-1925
        • Deisboeck T.S.
        • Zhang L.
        • Yoon J.
        • Costa J.
        In silico cancer modeling: is it ready for prime time?.
        Nat Clin Pract Oncol. 2009; 6: 34-42
        • Byrne H.M.
        Dissecting cancer through mathematics: from the cell to the animal model.
        Nat Rev Cancer. 2010; 10: 221-230
        • Olea N.
        • Villalobos M.
        • Ruiz de Almodóvar J.M.
        • Pedraza V.
        MCF-7 breast cancer cells grown as multicellular spheroids in vitro: effect of 17β-estradiol.
        Int J Cancer. 1992; 50: 112-117
        • Mueller-Klieser W.
        Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids.
        Biophys J. 1984; 46: 343-348
        • Sutherland R.M.
        • Sordat B.
        • Bamat J.
        • Gabbert H.
        • Bourrat B.
        • Mueller-Klieser W.
        Oxygenation and differentiation in multicellular spheroids of human colon carcinoma.
        Cancer Res. 1986; 46: 5320-5329
        • Wartenberg M.
        • Dönmez F.
        • Ling F.C.
        • Acker H.
        • Hescheler J.
        • Sauer H.
        Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells.
        FASEB J. 2001; 15: 995-1005
        • Timmins N.E.
        • Dietmair S.
        • Nielsen L.K.
        Hanging-drop multicellular spheroids as a model of tumour angiogenesis.
        Angiogenesis. 2004; 7: 97-103
      5. Villalobos M. Modelos tumorales en oncología: los esferoides multicelulares en el estudio del cáncer hormonodependiente. PhD Thesis. University of Granada (Spain) 1996.

        • Freyer J.P.
        • Sutherland R.M.
        Selective dissociation and characterization of cels from different regions of multicell tumour spheroids.
        Cancer Res. 1980; 40: 3956-3965
        • Durand R.E.
        Use of Hoechst 33342 for cell selection from multicell systems.
        J Histochem Cytochem. 1982; 1982: 117-122
        • Kwok T.T.
        • Twentyman P.R.
        The relationship between tumour geometry and the response of tumour cels to cytotoxic drugs - an in vitro study using EMT6 multicellular spheroids.
        Int J Cancer. 1985; 35: 675-682
        • Kwok T.T.
        • Twentyman P.R.
        Use of a tritiated thymidine suicide technique in the study of the cytotoxic drug response of cells located at different depths within multicellular spheroids.
        Br J Cancer. 1987; 55: 367-374
        • Durand R.E.
        Variable radiobiological responses of spheroids.
        Radiat Res. 1980; 81: 85-99
        • Bell H.S.
        • Whittle I.R.
        • Walker M.
        • Leaver H.A.
        • Wharton S.B.
        The development of necrosis and apoptosis in glioma: experimental findings using spheroid culture systems.
        Neuropathol Appl Neurobiol. 2001; 27: 291-304
        • Khaitan D.
        • Chandna D.
        • Arya M.B.
        • Dwarakanath B.S.
        Establishment and characterization of multicellular spheroids from a human glioma cell line; Implications for tumor therapy.
        J Transl Med. 2006; 4: 12
        • Soule H.D.
        • Vazguez J.
        • Long A.
        • Albert S.
        • Brennan M.
        A human cell line from a pleural effusion derived from a breast carcinoma.
        J Natl Cancer. 1973; 51: 1409-1416
        • Raghavan S.
        • Mehta P.
        • Horst E.N.
        • Ward M.R.
        • Rowley K.R.
        • Mehta G.
        Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity.
        Oncotarget. 2016; 7: 16948-16961
      6. JCGM 100:2008. JCGM. 2008;
        • Carlsson J.
        • Yuhas J.M.
        Liquid-overlay culture of cellular spheroids.
        in: Recent results in cancer research. Spheroids in cancer research. vol. 95. Springer-Verlag, Berlin1984: 1-23
        • Gong X.
        • Lin C.
        • Cheng J.
        • Su J.
        • Zhao H.
        • Liu T.
        • Wen X.
        • Zhao P.
        Generation of multicellular tumor spheroids with microwell-based agarose xcaffolds for drug testing.
        PLoS ONE. 2015; 10e0130348
        • Olea N.
        • Villalobos M.
        • Nuñez J.
        • Elvira J.
        • Ruiz de Almodóvar J.M.
        • Pedraza V.
        Evaluation of the growth rate of MCF-7 breast cancer multicellular spheroids using three mathematical models.
        Cell Prolif. 1993; 27: 213-223
        • Grimes D.R.
        • Kelly C.
        • Bloch K.
        • Partridge M.
        A method for estimating the oxygen consumption rate in multicellular tumour spheroids.
        J R Soc Interface. 2014; 11: 20131124
        • Smolle J.
        Cellular automaton simulation of tumour growth - equivocal relationships between simulation parameters and morphologic pattern features.
        Anal Cell Path. 1998; 17: 71-82
        • Zanoni M.
        • Piccinini F.
        • Arienti C.
        • Zamagni A.
        • Santi S.
        • Polico R.
        • Bevilacqua A.
        • Tesei A.
        3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained.
        Sci Rep. 2016; 6: 19103
        • Lee J.M.
        • Park D.Y.
        • Yang L.
        • Kim E.-J.
        • Ahrberg C.D.
        • Lee K.-B.
        • Chung B.G.
        Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening.
        Sci Rep. 2018; 8: 17145